The mole<span> is the </span>unit of measurement<span> in the </span>International System of Units<span> (SI) for </span>amount of substance<span>. It is defined as the </span>amount<span> of a </span>chemical substance<span> that contains as many representative particles, e.g., </span>atoms<span>, </span>molecules<span>, </span>ions<span>, </span>electrons<span>, or </span>photons<span>, as there are atoms in 12 </span>grams<span> of </span>carbon-12<span> (</span>12<span>C), the </span>isotope<span> of </span>carbon<span> with </span>relative atomic mass<span> 12 by definition.
so to solve the moles, divide the mass with molar mass
moles = 4177 g / </span><span>133.34 g/mol
moles = 31.33 moles</span>
Answer:
Explanation:
use the equation
moles = mass/mr
=19.9/79.5
=0.250moles of CuO
then do the same for
H = 2.02/1
=2.02
so CuO is the limiting reagent because there is less amount of it.
Hope this helps :)
Answer:
Nonbonding pairs of electrons.
Explanation:
Both oxygen atoms in the diatomic molecule have two nonbonding pairs. This results in the oxygen molecule having a planar geometric shape. This is because nonbonding pairs repel each other are significant in determining the shape of a molecule.
Answer: The partial pressure of oxygen in the mixture is 321 mm Hg
Explanation:
According to Dalton's law, the total pressure is the sum of individual pressures.

Given :
= total pressure of gases = 752 mm Hg
= partial pressure of Helium = 234 mm Hg
= partial pressure of nitrogen = 197 mm Hg
= partial pressure of oxygen = ?
Putting in the values we get:


The partial pressure of oxygen in the mixture is 321 mm Hg
The measure of the quantity of heat exchanged.
Uses many different units of measurements.