Answer:<span>d. 145 minutes
</span>
Half-life is the time needed for a radioactive to decay half of its weight. The formula to find the half-life would be:
Nt= N0 (1/2)^ t/h
Nt= the final mass
N0= the initial mass
t= time passed
h= half-life
If 25.0% of the compound decomposes that means the final mass would be 75% of initial mass. Then the half-live for the compound would be:
Nt= N0 (1/2)^ t/h
75%= 100% * (1/2)^ (60min/h)
3/4= 1/2^(60min/h)
log2 3/4 = log2 1/2^(60min/h)
0.41503749928 = -60min/h
h= -60 min / 0.41503749928= 144.6min
Answer:
odorless, crystalline, white solid with a sour taste.
Explanation:
Answer: electrons
Explanation: Electrons have a charge of -1 each. If two left, the remaining atom would have a positive +2 change.
Answer:
Here's what I find.
Explanation:
An indicator is usually is a weak acid in which the acid and base forms have different colours. Most indicators change colour over a narrow pH range.
(a) Litmus
Litmus is red in acid (< pH 5) and blue in base (> pH 8).
This is a rather wide pH range, so litmus is not much good in titrations.
However, the range is which it changes colour includes pH 7 (neutral), so it is good for distinguishing between acids and bases.
(b) Phenolphthalein
Phenolphthalein is colourless in acid (< pH 8.3) and red in base (> pH 10).
This is a narrow pH range, so phenolphthalein is good for titrating acids with strong bases..
However, it can't distinguish between acids and weakly basic solutions.
It would be colourless in a strongly acid solution with pH =1 and in a basic solution with pH = 8.
(c) Other indicators
Other acid-base indicators have the general limitations as phenolphthalein. Most of them have a small pH range, so they are useful in acid-base titrations.
The only one that could serve as a general acid-base indicator is bromothymol blue, which has a pH range of 6.0 to 7.6.
True.
<span><span>Melting points decrease down a group and increase across a period.</span>
</span>