Answer : The equilibrium concentration of
in the solution is, 
Explanation :
The dissociation of acid reaction is:

Initial conc. c 0 0
At eqm. c-x x x
Given:
c = 

The expression of dissociation constant of acid is:
![K_a=\frac{[H_3O^+][C_6H_5COO^-]}{[C_6H_5COOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BC_6H_5COO%5E-%5D%7D%7B%5BC_6H_5COOH%5D%7D)

Now put all the given values in this expression, we get:
![6.3\times 10^{-5}=\frac{(x)\times (x)}{[(7.0\times 10^{-2})-x]}](https://tex.z-dn.net/?f=6.3%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%28x%29%5Ctimes%20%28x%29%7D%7B%5B%287.0%5Ctimes%2010%5E%7B-2%7D%29-x%5D%7D)

Thus, the equilibrium concentration of
in the solution is, 
Li2S + 2 HNO3 --> 2 LiNO3 + H2S
Li2 S + H2 N2 O2 --> Li2 N2 O5 + H2 S
Li S + H2 N2 O5 -> Li N2 O5 + H2 S
Li2 S2 + H4 N4 O10 --> Li2 N4 O10 + H4 S2
Li^2 S^2 + H^4 N^4 O^10 --> Li^2 N^4 O^10 + H^4 S^2
Answer:
they have the same molar solubility at 44.5 degrees celsius