Using the mass/volume percentage method for percentages of the solution, you simply divide the grams of solute by the volume of the solution and multiply by 100 to get your percentage.
(75.0g/250mL)•100 = 30.0% solute
Answer & Explanation:
At high temperatures or in the presence of catalysts, sulfur dioxide reacts with hydrogen sulfide to form elemental sulfur and water. This reaction is exploited in the Claus process, an important industrial method to dispose of hydrogen sulfide.
The simple equation used to calculate work is force multiplied by distance, thus as this is the case increasing the distance by a certain amount, assuming the force applied to the object is constant, the amount of work you are doing on the box for instance pushing it, is going to be greater
Since you are pushing the box with the same force covering a greater distance with the force.
Answer:
Explanation:
Glucose + ATP → glucose 6-phosphate + ADP The equilibrium constant, Keq, is 7.8 x 102.
In the living E. coli cells,
[ATP] = 7.9 mM;
[ADP] = 1.04 mM,
[glucose] = 2 mM,
[glucose 6-phosphate] = 1 mM.
Determine if the reaction is at equilibrium. If the reaction is not at equilibrium, determine which side the reaction favors in living E. coli cells.
The reaction is given as
Glucose + ATP → glucose 6-phosphate + ADP
Now reaction quotient for given equation above is
![q=\frac{[\text {glucose 6-phosphate}][ADP]}{[Glucose][ATP]}](https://tex.z-dn.net/?f=q%3D%5Cfrac%7B%5B%5Ctext%20%7Bglucose%206-phosphate%7D%5D%5BADP%5D%7D%7B%5BGlucose%5D%5BATP%5D%7D)

so,
⇒ following this criteria the reaction will go towards the right direction ( that is forward reaction is favorable until q = Keq
Formal charge can be calculated from the following formula
Formal charge = valency of central atom - (number of lone pair of electrons + number of covalent bonds)
a) for methylene:
Formal charge = 4 -( 2+ 2) = 0
b) For methyl free radical
Formal charge = 4- (3 +1) = 0