Answer:
33.2 m
Explanation:
For the first object:
y₀ = 81.5 m
v₀ = 0 m/s
a = -9.8 m/s²
t₀ = 0 s
y = y₀ + v₀ t + ½ at²
y = 81.5 − 4.9t²
For the second object:
y₀ = 0 m
v₀ = 40.0 m/s
a = -9.8 m/s²
t₀ = 2.20 s
y = y₀ + v₀ t + ½ at²
y = 40(t−2.2) − 4.9(t−2.2)²
When they meet:
81.5 − 4.9t² = 40(t−2.2) − 4.9(t−2.2)²
81.5 − 4.9t² = 40t − 88 − 4.9 (t² − 4.4t + 4.84)
81.5 − 4.9t² = 40t − 88 − 4.9t² + 21.56t − 23.716
81.5 = 61.56t − 111.716
193.216 = 61.56t
t = 3.139
The position at that time is:
y = 81.5 − 4.9(3.139)²
y = 33.2
They all move through empty space at the speed of light
Explanation:
Below is an attachment containing the solution.
Answer:
103.57 Km/h
Explanation:
From the question given above, the following data were obtained:
Distance = 725 Km
Time = 7 hours
Speed =?
Speed can be defined as the distance travelled per unit time. Mathematically, it is expressed as:
Speed = Distance /time
With the above formula, we can calculate how fast he will drive (i.e the speed) in order to get there on time. This is illustrated below:
Distance = 725 Km
Time = 7 hours
Speed =?
Speed = Distance /time
Speed = 725 / 7
Speed = 103.57 Km/h
Thus, to get there on time, he will drive with a speed of 103.57 Km/h