Answer: A maximum of 1 hour
Explanation:
Read your lesson buddy!!
The thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.
<h3>
Thickness of the aluminum</h3>
The thickness of the aluminum can be determined using from distance of closest approach of the particle.

where;
- Z is the atomic number of aluminium = 13
- e is charge
- r is distance of closest approach = thickness of aluminium
- k is Coulomb's constant = 9 x 10⁹ Nm²/C²
<h3>For 2.5 MeV electrons</h3>

<h3>For 2.5 MeV protons</h3>
Since the magnitude of charge of electron and proton is the same, at equal kinetic energy, the thickness will be same. r = 1.5 x 10⁻¹⁴ m.
<h3>For 10 MeV alpha-particles</h3>
Charge of alpah particle = 2e

Thus, the thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.
Learn more about closest distance of approach here: brainly.com/question/6426420
It would be 72cm bc u need to add up all the line in the back to
Answer:
β =
= 0.7071 ≈ 1 ( damping condition )
closed-form expression for the response is attached below
Explanation:
Given : x + 2x + 2x = 0 for Xo = 0 mm and Vo = 1 mm/s
computing a solution :
M = 1,
c = 2,
k = 2,
Wn =
=
next we determine the damping condition using the damping formula
β =
= 0.7071 ≈ 1
from the condition above it can be said that the damping condition indicates underdamping
attached below is the closed form expression for the response