Answer:
a)
, b)
, c) ![T = 200.829\,^{\textdegree}F](https://tex.z-dn.net/?f=T%20%3D%20200.829%5C%2C%5E%7B%5Ctextdegree%7DF)
Explanation:
a) The tank can be modelled by the Principle of Mass Conservation:
![\dot m_{1} + \dot m_{2} - \dot m_{3} = 0](https://tex.z-dn.net/?f=%5Cdot%20m_%7B1%7D%20%2B%20%5Cdot%20m_%7B2%7D%20-%20%5Cdot%20m_%7B3%7D%20%3D%200)
The mass flow rate exiting the tank is:
![\dot m_{3} = \dot m_{1} + \dot m_{2}](https://tex.z-dn.net/?f=%5Cdot%20m_%7B3%7D%20%3D%20%5Cdot%20m_%7B1%7D%20%2B%20%5Cdot%20m_%7B2%7D)
![\dot m_{3} = 125\,\frac{lbm}{s} + 10\,\frac{lbm}{s}](https://tex.z-dn.net/?f=%5Cdot%20m_%7B3%7D%20%3D%20125%5C%2C%5Cfrac%7Blbm%7D%7Bs%7D%20%2B%2010%5C%2C%5Cfrac%7Blbm%7D%7Bs%7D)
![\dot m_{3} = 135\,\frac{lbm}{s}](https://tex.z-dn.net/?f=%5Cdot%20m_%7B3%7D%20%3D%20135%5C%2C%5Cfrac%7Blbm%7D%7Bs%7D)
b) An expression for the specific enthalpy at outlet is derived from the First Law of Thermodynamics:
![\dot m_{1}\cdot h_{1} + \dot m_{2} \cdot h_{2} - \dot m_{3}\cdot h_{3} = 0](https://tex.z-dn.net/?f=%5Cdot%20m_%7B1%7D%5Ccdot%20h_%7B1%7D%20%2B%20%5Cdot%20m_%7B2%7D%20%5Ccdot%20h_%7B2%7D%20-%20%5Cdot%20m_%7B3%7D%5Ccdot%20h_%7B3%7D%20%3D%200)
![h_{3} = \frac{\dot m_{1}\cdot h_{1}+\dot m_{2}\cdot h_{2}}{\dot m_{3}}](https://tex.z-dn.net/?f=h_%7B3%7D%20%3D%20%5Cfrac%7B%5Cdot%20m_%7B1%7D%5Ccdot%20h_%7B1%7D%2B%5Cdot%20m_%7B2%7D%5Ccdot%20h_%7B2%7D%7D%7B%5Cdot%20m_%7B3%7D%7D)
Properties of water are obtained from tables:
![h_{1}=180.16\,\frac{BTU}{lbm}](https://tex.z-dn.net/?f=h_%7B1%7D%3D180.16%5C%2C%5Cfrac%7BBTU%7D%7Blbm%7D)
![h_{2}=28.08\,\frac{BTU}{lbm} + \left(0.01604\,\frac{ft^{3}}{lbm}\right)\cdot (14.7\,psia-0.25638\,psia)](https://tex.z-dn.net/?f=h_%7B2%7D%3D28.08%5C%2C%5Cfrac%7BBTU%7D%7Blbm%7D%20%2B%20%5Cleft%280.01604%5C%2C%5Cfrac%7Bft%5E%7B3%7D%7D%7Blbm%7D%5Cright%29%5Ccdot%20%2814.7%5C%2Cpsia-0.25638%5C%2Cpsia%29)
![h_{2}=29.032\,\frac{BTU}{lbm}](https://tex.z-dn.net/?f=h_%7B2%7D%3D29.032%5C%2C%5Cfrac%7BBTU%7D%7Blbm%7D)
The specific enthalpy at outlet is:
![h_{3}=\frac{(125\,\frac{lbm}{s} )\cdot (180.16\,\frac{BTU}{lbm} )+(10\,\frac{lbm}{s} )\cdot (29.032\,\frac{BTU}{lbm} )}{135\,\frac{lbm}{s} }](https://tex.z-dn.net/?f=h_%7B3%7D%3D%5Cfrac%7B%28125%5C%2C%5Cfrac%7Blbm%7D%7Bs%7D%20%29%5Ccdot%20%28180.16%5C%2C%5Cfrac%7BBTU%7D%7Blbm%7D%20%29%2B%2810%5C%2C%5Cfrac%7Blbm%7D%7Bs%7D%20%29%5Ccdot%20%2829.032%5C%2C%5Cfrac%7BBTU%7D%7Blbm%7D%20%29%7D%7B135%5C%2C%5Cfrac%7Blbm%7D%7Bs%7D%20%7D)
![h_{3}=168.965\,\frac{BTU}{lbm}](https://tex.z-dn.net/?f=h_%7B3%7D%3D168.965%5C%2C%5Cfrac%7BBTU%7D%7Blbm%7D)
c) After a quick interpolation from data availables on water tables, the final temperature is:
![T = 200.829\,^{\textdegree}F](https://tex.z-dn.net/?f=T%20%3D%20200.829%5C%2C%5E%7B%5Ctextdegree%7DF)
Answer:
Planned maintenance refers to any scheduled activity carried out to check a machine is working ok and diagnose procedures to fix it if need it. On the other hand, predictive mainteance is all the techniques which help to define if a machine requires or not maintenance activities so far.
Explanation:
Planned maintenance is based on preventive routines to ensure a machine is working in acceptable conditions and at the same time prevent them to change to risky values performing acticities like parts replacement, cleaning, etc. The key of this maintenance is schedule, that is to say, is a maintenance that has to be carried out constantly each certain time. Predictive maintenance is different because it is used to define if a machie needs any kind of inspection or if, on the contrary, the machine can continue operating without any intervention. The good point about predictive maintenance is the capability of telling when a maintenance is required and when is no necessarily required which is ideal to save costs.
Answer:
the cycle is on the power just before the exhaust as both the valves are closed
Answer:
#WeirdestQuestionOfAllTime
Explanation:
Answer:
have you heard of gnoogle?
Explanation:have you heard of goongle?