Answer: None of the given options show polymer made up of H₂C=CH-CN (Acrylonitrile).
Explanation: Acrylonitrile (H₂C=CH-CN) which is a monomer on self linkage results in a large chain polymer called as
Polyacrylonitrile.
The structure of Polyacrylonitrile is as follow,
--(H₂C-CHCN-)n--Where n shows the number of Acrylonitrile units joined together in the formation of Polyacrylonitrile. This polymerization reaction can take place by different mechanisms including free radical mechanism, acid catalyzed addition or base catalyzed addition reaction.
The polymerization is shown below,
I think that you have put up an incomplete question. However, i am answering the question based on my research and knowledge.
Lissa- accuracy and precision are both low
Lamont- accuracy and precision are definitely high
<span>Leigh Anne- accuracy is low but precision is definitely high.
</span>
I hope that this is the answer that you were looking for and the answer has definitely come to your desired help.
Q1: sort your numbers into numerical order so you can determine the highest and lowest measured values. and then subtract the lowest measured value from the highest measured value. Now determine that the answer is the precision.
Q2: In one meter there are 100 centemeter. Now you got 5.8 miles per hour which will become 580 centemeter per hour. In addition, there are 60 minutes in an hour. Based on what we know, 580 centemeters per hour will and should become 580/60 cm/min
The pH a 0.25 m solution of C₆H₅NH₂ is equal to 3.13.
<h3>How do we calculate pH of weak base?</h3>
pH of the weak base will be calculate by using the Henderson Hasselbalch equation as:
pH = pKb + log([HB⁺]/[B])
pKb = -log(1.8×10⁻⁶) = 5.7
Chemical reaction for C₆H₅NH₂ is:
C₆H₅NH₂ + H₂O → C₆H₅NH₃⁺ + OH⁻
Initial: 0.25 0 0
Change: -x x x
Equilibrium: 0.25-x x x
Base dissociation constant will be calculated as:
Kb = [C₆H₅NH₃⁺][OH⁻] / [C₆H₅NH₂]
Kb = x² / 0.25 - x
x is very small as compared to 0.25, so we neglect x from that term and by putting value of Kb, then the equation becomes:
1.8×10⁻⁶ = x² / 0.25
x² = (1.8×10⁻⁶)(0.25)
x = 0.67×10⁻³ M = [C₆H₅NH₃⁺]
On putting all these values on the above equation of pH, we get
pH = 5.7 + log(0.67×10⁻³/0.25)
pH = 3.13
Hence pH of the solution is 3.13.
To know more about Henderson Hasselbalch equation, visit the below link:
brainly.com/question/13651361
#SPJ4