To solve this problem, we establish the general energy balance:
ΔE = ΔU + ΔKE + ΔPE
ΔE = Q + W
Q + W = ΔU + ΔKE + ΔPE
In this case, ΔKE and ΔPE are both zero or negligible.
Given:
m = 33.0 grams of CO2
Tsub = 77 K
P = 1 atm
ΔE = Q + W
ΔE = mCpΔT + ΔPV
solve for mCpΔT, find the value of Cp for CO2, then solve for Q. Next, solve for W using the ideal gas law. Add the two values and that will be the value of the delta E.
Answer:
Carbon dioxide and water
Explanation:
Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organisms' activities. This chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water – hence the name photosynthesis.
Answer:
Because it has a darker pigment?
Explanation:
Answer: polar protic solvents solvate the nucleophile necessary for attack on the substrate in SN2 substitution.
Explanation:
Aprotic solvents are solvents that lack protons such as dimethyl sulphoxide (DMSO). DMSO has no exposed positive end. The positive end is buried inside the molecular structure. As a result of this, the nucleophile is not solvated. If the nucleophile is solvated, the rate of SN2 reaction will reduce drastically because the nucleophile becomes unavailable to attack the substrate. This solvation normally occur in polar protic solvents such as water because of the exposed positive end of the molecule which interacts with the nucleophile thereby reducing the rate of SN2 reaction.
No, They need something to hold on to, such as dirt