It glow, so light energy go out of the system, exotermic
120 grams of Carbon-14 decays to 15 grams in 17,190 years.
the water wants to give the electricity to you because it doesn't want any more electrons it throws them away and gives them to your body
The final temperature = 36 °C
<h3>Further explanation</h3>
The balanced combustion reaction for C₆H₆
2C₆H₆(l)+15O₂(g)⇒ 12CO₂(g)+6H₂O(l) +6542 kJ
MW C₆H₆ : 78.11 g/mol
mol C₆H₆ :

Heat released for 2 mol C₆H₆ =6542 kJ, so for 1 mol

Heat transferred to water :
Q=m.c.ΔT

Answer:
The concentration of O2 will begin decreasing and The concentrations of CO2 and O2 will be equal.
Explanation:
Equilibrium occurs when the velocity of the formation of the products it's equal to the velocity of the formation of the reactants, thus the concentrations of the compounds remain constant.
Analyzing the information and the reaction given, we can notice that in equilibrium the rate (velocity) of formation of O2 (product) is equal to the rate of formation of CO2 (reactant).
As the CO2 and H2O are placed in the reaction, the Le Chateliêr's principle states that the equilibrium must shift to reestablish the equilibrium, thus, they must be consumed, and the concentration of O2 must increase.
As state above, in equilibrium, the concentrations didn't change, thus, the concentrations of CO2 and O2 will not change.
The concentrations of CO2 and O2 depends on the rate of the reaction and the initial quantities presented, so it's not possible to affirm they'll be equal.