Answer:
We know that potential energy of a body;
= mass(m)× gravitational acceleration(g) × height(h)
Lets find out the mass of the body
P.E. = mgh
=> 6500J = mass × 9.8m/s^2 × 12m
=>6500J = mass × ( 9.8 × 12 ) × ( m/s^2 × m)
=> 6500 Nm = m × 117.6 × m^2 / s^2
=> 6500/117.6 Ns^2/m = mass [°.° Ns^2/m = kg]
=> 55.272 Kg = mass
Therefore the mass of the body = 55.272 kg ~ <em>6</em><em>0</em><em> </em><em>k</em><em>g</em><em> </em>(Ans)
Hope it helps you
The smaller body will have greater temperature change.
<h3><u>Explanation</u>:</h3>
Temperature is defined as the degree of hotness or coldness of a body. The relationship of the temperature with heat is described as
Q =m c dT.
Where Q is the heat content
m is the mass of body
c is the specific heat of body
dT is the temperature change of body.
Here the bodies are made up of same substance, so specific heat is same. The mass of bigger body is M and smaller body is m.
So the temperature change of the body will be dependent on the mass of the body. Heat loss by one body will be equal to heat gained by the other.
So M dT1 = mdT2.
So, M/m = dT2 / dT1.
So the the smaller body will be suffering higher temperature change.
Jeff uses all of his weight to lift the 600 lbs. C is your answer i do believe
Answer:
Newton's Second Law of Motion states that a force on an object is equal to the mass of the object multiplied by its acceleration (F=ma). ... When the punter kicks the ball, his foot exerts a force on the ball. The football then exerts an equal amount of force in the opposite direction on the kicker's foot.
Answer:
v = 75 m / 15 s = 5 m/s
Explanation:
Speed is equal to the distance traveled divided by the time.
v = d / t