Explanation:
⁶⁵₃₀Ca → ⁶⁵₂₉Sc + ⁿₓH
The reaction above is nuclear reaction.
In a nuclear reaction, the mass number and atomic number must be conserved.
The mass number is the superscript before the atom
Atomic number is the subscript before the atom
Conserving mass number:
65 = 65 + n
n = 0
conserving atomic number:
30 = 29 + x
x = 1
The unknown atom is a positron i.e a positively charged electron: ⁰₁e
⁶⁵₃₀Ca → ⁶⁵₂₉Sc + ⁰₁e
learn more:
Transmutation brainly.com/question/3433940
#learnwithBrainly
Answer:
Ba²⁺(aq) + 2 NO₃⁻(aq) + 2 Rb⁺(aq) + 2 OH⁻(aq) = Ba(OH)₂(s) + 2 Rb⁺(aq) + 2NO₃⁻(aq)
Explanation:
Let's consider the molecular equation between barium nitrate and rubidium hydroxide to produce barium hydroxide and rubidium nitrate.
Ba(NO₃)₂(aq) + 2 RbOH(aq) = Ba(OH)₂(s) + 2 RbNO₃(aq)
The complete ionic equation includes all the ions and the molecular species.
Ba²⁺(aq) + 2 NO₃⁻(aq) + 2 Rb⁺(aq) + 2 OH⁻(aq) = Ba(OH)₂(s) + 2 Rb⁺(aq) + 2NO₃⁻(aq)
Answer:
14.4g
Explanation:
First, we need to write a balanced equation for the reaction between Fe and O2 to produce Fe2O3. This is illustrated below:
4Fe + 3O2 —> 2Fe2O3
From the balanced equation,
4moles of Fe produced 2moles of Fe2O3.
Therefore, 0.18mol of Fe will produce = (0.18x2) /4 = 0.09mol of Fe2O3.
Now we need to find the mass present in 0.09mol of Fe2O3. This can be achieved by doing the following:
Molar Mass of Fe2O3 = (56x2) + (16x3) = 112 + 48 = 160g/mol
Number of mole of Fe2O3 = 0.09mol
Number of mole = Mass /Molar Mass
Mass = number of mole x molar Mass
Mass of Fe2O3 = 0.09 x 160 = 14.4g
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
<span>P2 = P1V1/V2</span>
<span>
</span>
<span>The correct answer is the first option. Pressure would increase. This can be seen from the equation above where V2 is indirectly proportional to P2.</span>
Answer:
ICI 204448 hydrochloride | C23H27Cl3N2O4 | CID 129407 - structure, chemical names, physical and chemical properties, classification, patents, literature, etc...
hope this helps!! have an amazing day <3