Answer:
The new force will be \frac{1}{100} of the original force.
Explanation:
In the context of this problem, we're dealing with the law of gravitational attraction. The law states that the gravitational force between two object is directly proportional to the product of their masses and inversely proportional to the square of a distance between them.
That said, let's say that our equation for the initial force is:
![F = G\frac{m_1m_2}{R^2}The problem states that the distance decrease to 1/10 of the original distance, this means:[tex]R_2 = \frac{1}{10}R](https://tex.z-dn.net/?f=F%20%3D%20G%5Cfrac%7Bm_1m_2%7D%7BR%5E2%7D%3C%2Fp%3E%3Cp%3EThe%20problem%20states%20%20that%20%20the%20distance%20decrease%20to%201%2F10%20of%20the%20original%20distance%2C%20this%20means%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DR_2%20%3D%20%5Cfrac%7B1%7D%7B10%7DR)
And the force at this distance would be written in terms of the same equation:

Find the ratio between the final and the initial force:

Substitute the value for the final distance in terms of the initial distance:

Simplify:

This means the new force will be \frac{1}{100} of the original force.
Answer:
18 km
Explanation:
To know the distance, you need to be clear in the concept of distance.
According to the physics, the distance is a measurement that refers to the fact of how much an object has move from one point to another.
In this case, we have a person named Steve and he's walking through several points.
To calculate the distance that he moved, you just need to sum all the values of distance. In this case, it's not neccesary to do calculations regarding the components of the x or y axis, because we are not talking about displacement, where it actually counts. But in this case, we just need all the covered distance that Steven walked since the beggining.
So, no more talk, let's do calculations:
D = 5 + 2 + 9 + 2 = 18 km
So the final answer would be:
<h2>
Distance = 18 km</h2>
Hope this helps
Answer: A volume of 455 mL from 0.550 M KBr solution can be made from 100.0 mL of 2.50 M KBr.
Explanation:
Given:
= ?,
= 0.55 M
= 100.0 mL,
= 2.50 M
Formula used to calculate the volume of KBr is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that a volume of 455 mL from 0.550 M KBr solution can be made from 100.0 mL of 2.50 M KBr.
<span> Ethyl Mercaptan
Hope this helped!</span>
“Water” is the best thermal insulator.
Option: B
<u>Explanation</u>:
“Thermal insulators” are the materials which do not allow heat to transfer. “Water” is the substance which does not transfer heat. Hence, the “water” is the best “thermal insulator”. Water is the bad conductor of thermal heat. Water has “low thermal conductivity” than other substances, so this acts as an insulator as long as it is not traveled from one place to another. Heat is transferred when a “hot object collides” with “the cold objects”. The “thermal conductivity” of “water” is 0.6 W/m K.