1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zmey [24]
3 years ago
10

A package is dropped from a helicopter moving upward at 15m/s. If it takes 10 s before the package strikes the ground, how high

above the ground was the ground was the package when it was released if air resistance is negligible?
(A) 408 m
(B) 272 m
(C) 204 m
(D) 340 m
Physics
2 answers:
Vlad1618 [11]3 years ago
6 0

Answer:

A package is dropped from a helicopter moving upward at 15 m/s. If it takes 16.0 s before the package strikes the ground, how high above the ground was the package when it was released? (Disregard air resistance.)

Show step by step please.

Note: The answer is given it's should be 1000 m ??

This what i can up with so see what it is kid

Explanation:

Anni [7]3 years ago
4 0

Answer:

The right answer is (D) 340m

Explanation:

If the package is dropped from a helicopter moving upward and the air resistance is negligible, the only acting force in the package is the gravity force. Therefore you can consider this as a Vertical Projectile Motion problem.

The initial speed of the package V₀ is 15m/s.

The acceleration of the package G is 9.8m/s².

The initial hight is Y₀. Therefore:

Y(t)=Y₀+V₀·t-0.5·G·t²

But we know than T(10s)=0m

0m=Y₀+150m-490m

Y₀=340m

You might be interested in
how many times does the kinectic energy of a car increase when traveling 60 mph as opposed to traveling 30 mph
Bumek [7]
The car at 60 kph has 9 times more kinetic energy than the car traveling at 20 kph. This assumes that both cars have the same mass. Kinetic energy depends on the square of thee speed so if one car is going 3 times faster, its kinetic energy will be 3^2 ( = 9 ) greater. The car going at 60 kph will have 4 times the KE of the car going at 30 kph ( again assuming that the cars have the same mass.)
3 0
3 years ago
Firemen are shooting a stream of water at a burning building. A high-pressure hose shoots out the water with a speed of 26.0 m/s
alekssr [168]

Answer:

a) θ = 58.3º

b) vfh = 13.7 m/s

c) g = -9.8 m/s2

d) h = 22.2 m

e) vfb = 15.5 m/s

Explanation:

a)

  • Assuming that gravity is the only influence that causes an acceleration to the water, due to it is always downward, since both directions are independent each other, in the horizontal direction, the water moves at a constant speed.
  • Since the velocity vector has a magnitude of 26.0 m/s, we can find its horizontal component as follows:
  • vₓ₀ = v * cos θ (1)
  • where θ is the angle between the water and the horizontal axis (which we define as the x-axis, being positive to the right).
  • Applying the definition of average velocity, taking the end of the hose like the origin, and making t₀ = 0, we can write the following expression:

        x_{f} = v_{ox} * t = v_{o} * cos \theta * t  (2)

  • Replacing by the givens of xf = 41.0m, t = 3.00 s, and v=26.0 m/s, we can solve for the angle of elevation θ, as follows:

        cos \theta = \frac{x_{f} }{v*t} = \frac{41.0m}{26.0m/s*3.00s} = 0.526 (3)

  • ⇒θ = cos⁻¹ (0.526) = 58.3º (4)

b)

  • At the highest point in its trajectory, just before starting to fall, the vertical component of the velocity is just zero.
  • Since the horizontal component keeps constant during all the journey, we can conclude that the speed at this point is just v₀ₓ, that we can find easily from (1) replacing by the values of v and cos θ, as follows:
  • vₓ₀ = v * cos θ = 26.0 m/s * 0.526 = 13.7 m/s. (5)

c)

  • At any point in the trajectory, the only acceleration present is due to the action of gravity, which accepted value is -9.8 m/s2 (taking the upward direction on the vertical y-axis as positive)

d)

  • Since we know the time when the water strikes the building, it will be the same for the vertical movement, so, we can use the kinematic equation for vertical displacement, as follows:

       \Delta y = v_{oy} * t - \frac{1}{2} *g*t^{2} (6)

  • Our only unknown remains v₀y, which can be obtained in the same way than the horizontal component:
  • v₀y = v * sin θ = 26.0 m/s * 0.85 = 22.1 m/s (7)
  • Replacing (7) in (6), we get:

       \Delta y = 22.1 m/s* 3.0s - \frac{1}{2} *9.8m/s2*(3.00s)^{2} = 22.2 m (8)

e)

  • When the water hits the building the velocity vector, has two components, the horizontal vₓ and the vertical vy.
  • The horizontal component, since it keeps constant, is just v₀x:
  • v₀ₓ = 13.7 m/s
  • The vertical component can be found applying the definition of acceleration (g in this case), solving for the final velocity, as follows:

       v_{fy} = v_{oy} - g*t  (9)

  • Replacing by the time t (a given), g, and  v₀y from (7), we can solve (9) as follows:

       v_{fy} = 22.1 m/s - 9.8m/s2*3.00s = -7.3 m/s  (10)

  • Since we know the values of both components (perpendicular each other), we can find the magnitude of the velocity vector (the speed, i.e. how fast is it moving), applying the Pythagorean Theorem to v₀ₓ and v₀y, as follows:

       v_{f} = \sqrt{(13.7m/s)^{2} +(-7.3m/s)^{2}} = 15.5 m/s (11)

3 0
3 years ago
A bimetallic strip (brass/steel), which is straight at room temperature, will be immersed in boiling water and allowed to equili
lakkis [162]

The thermal expansion of the materials allows to find the deflection of the bimetallist strip is Δy = 3.48 cm

given paramers

    * Bimetallic brass / steel tape

    * Initial temperature, room temperature T = 20ºC

    * Final temperature, boiling water  = 100ºC

    * initial length L₀ = 222mm (1cm / 10mm) = 22.2cm

    * thickness of bimetallic tape e = 0.036 inch (2.54 cm/1 inch) = 0.0914 cm

to find

    * perpendicular deviation or deflection (Δy)

Thermal expansion is the phenomenon of change in the length of a body due to the change in temperature, due to the increase in the length of the atomic and molecular bonds, macroscopically it is described by

        ΔL = α L₀ ΔT

ΔL and ΔT are the variation of the length and temperature respectively, L₀ is the initial length and α the coefficient of expansion ends.

In this case we have a strip formed by two materials with different coefficient of thermal expansion,

Brass       α_{brass}   = 19 10⁻⁶ ºC⁻¹

Steel       α_{steel}    = 11 10⁻⁶ ºC⁻¹

In the attached we can see a diagram of the process, as the temperature increases, the material with greater thermal expansion lengthens more, so the system must curve towards the center of the material with less

thermal expansion. Let's find the length of the strip for each material

brass          L_{f brass} - L₀ = α_{brass} L₀ ΔT

Steel           L_{f steel} - L₀ = \alpha_{steel} L₀ ΔT

Note that the initial length is the same for the two materials and that the strip is in thermal equilibrium at room temperature.

If we assume that we have an arc of circumference, we can write the length of the arc

        θ = L / r

where θ is the angle in radines, L the length of the arc and r the radius of curvature, let's write this equation for each material

brass     L_{f \ brass} =θ r₁

steel      L_{f \ steel} = θ r₂

we substitute in our equations

           θ r₁ - L₀ = α_{brass} L₀ ΔT

           θ r₂ - L₀ = α_{steel} L₀ ΔT

let's subtract the two equations

           θ (r₁- r₂) = L₀ ΔT (α_{brass} - α_{steel})

the thickness of the strip is

           e = r₁ -r₂

           θ = Lo \ \Delta T \ \frac{\alpha_{brass} - \alpha_{steel}}{e}

we calculate

           θ = 22.2 \ (100-20) \ \frac{(19-11) \ 10^{-6}}{0.0914}

           θ = 0.155 rad

Let's use trigonometry to find the perpendicular deflection

          tan θ = Δy / L₀

          Δy = L₀ tan θ

          Δy = 22.2 tan 0.155

          Δy = 3.48 cm

Using the thematic expansion of the two materials we find the deflection of the bimetallist strip is 3.38 cm

Learn more about thermal expansion here: brainly.com/question/18717902

7 0
3 years ago
Prior to the Panama Canal, __________ was a major route between the Atlantic and Pacific oceans.
Bingel [31]
The Rio Grande was the major route prior to the Panama Canal.
3 0
3 years ago
Read 2 more answers
The 2779-m Brooklyn-Battery Tunnel, connecting Brooklyn and Manhattan, is one of the world's longest underwater vehicular tunnel
Marina CMI [18]
For a cylinder that has both ends open resonant frequency is given by the following formula:
f= \frac{nv}{2L}
Where n is the resonance node, v is the speed of sound in air and L is the length of a cylinder.
The fundamental frequency is simply the lowest resonant frequency.
We find it by plugging in n=1:
f_0= \frac{v}{2L}=\frac{343}{2\cdot 2779}=0.062 Hz
To find what harmonic has to be excited so that it resonates at f>20Hz we simply plug in f=20 Hz and find our n:
20= \frac{n343}{2\cdot 2779} =n\cdot f_0
We can see that any resonant frequency is simply a multiple of a base frequency.
Let us find which harmonic resonates with the frequency 20 Hz:
20=n\cdot f_0\\ n=\frac{20}{0.062}=322.58
Since n has to be an integer, final answer would be 323.

3 0
3 years ago
Other questions:
  • Your boat capsizes but remains floating upside down. what should you do?
    13·2 answers
  • A car traveling in a straight line at an initial speed of 8.0 meters per second accelerates uniformly to a speed of 14 meters pe
    9·2 answers
  • The driver of a car travels at 90 km / h, observes some children playing on the road 50 m away, and applies the brakes, managing
    8·1 answer
  • Which of these is an example of a mechanical wave
    14·1 answer
  • 1. A force acting on an object in the upward direction is 3 N. The force that would
    10·2 answers
  • Explain the relationship between magnetic fields and magnetic force.
    15·1 answer
  • El profesor pide a juan que le indique tres magnitudes de su libro de texto y el le contesta; su peso, tamaño y el diseño de la
    13·1 answer
  • Which of the following is an example of heat transfer by convection?
    13·1 answer
  • You want to average 90 km/h on a car trip. You cover the first half of the distance at an
    11·1 answer
  • Blood flows through the major artery at 1 m/s for 0.5 m then at a 0.6 m/s over a distance of another 0.5 m through the small art
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!