1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
2 years ago
8

What makes the element named iron (Fe) different from the element named nickel (Ni)? A. Iron is a solid but nickel is a gas. B.

The only difference is the name of the element. C. Atoms of iron are different from atoms of nickel. D. Iron is made of atoms but nickel is not.
Physics
1 answer:
Mazyrski [523]2 years ago
6 0

Answer:C, Atoms of iron are different from atoms of nickel.

Explanation:All the atoms that make up each type of element are alike, and they are different from the atoms that make up every other type of element. So the element iron is different from the element nickel because the atoms that make up the iron are different from the atoms that make up the nickel.

You might be interested in
A wooden block with mass 1.60 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 30.0° (p
andreyandreev [35.5K]

Answer:

The amount of potential energy that was initially stored in the spring is 88.8 J.

Explanation:

Given that,

Mass of block = 1.60 kg

Angle = 30.0°

Distance = 6.55 m

Speed = 7.50 m/s

Coefficient of kinetic friction = 0.50

We need to calculate the amount of potential energy

Using formula of conservation of energy between point A and B

U_{A}+k_{A}+w_{A}=U_{B}+k_{B}

U_{A}+0-fd=mgy+\dfrac{1}{2}mv^2

U_{A}=\mu mg\cos\theta\times d+mg h\sin\theta+\dfrac{1}{2}mv^2

Put the value into the formula

U_{A}=0.50\times1.60\times9.8\cos30\times6.55+1.60\times9.8\times6.55\sin30+\dfrac{1}{2}\times1.60\times(7.50)^2

U_{A}=88.8\ J

Hence, The amount of potential energy that was initially stored in the spring is 88.8 J.

7 0
3 years ago
The center of the Hubble space telescope is 6940 km from Earth’s center. If the gravitational force between Earth and the telesc
Law Incorporation [45]
The gravitational force between two objects is given by:
F=G \frac{m_1 m_2}{r^2}
where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the separation between the two objects

The distance of the telescope from the Earth's center is r=6940 km=6.94 \cdot 10^6 m, the gravitational force is F=9.21 \cdot 10^4 N and the mass of the Earth is m_1=5.98 \cdot 10^{24} kg, therefore we can rearrange the previous equation to find m2, the mass of the telescope:
m_2 =  \frac{Fr^2}{Gm_1}= \frac{(9.21 \cdot 10^4 N)(6.94\cdot 10^6)^2}{(6.67\cdot 10^{-11})(5.98\cdot 10^{24})} =11121 kg
6 0
3 years ago
Read 2 more answers
Suppose a car of mass m is moving at a constant speed v of
SIZIF [17.4K]

Answer:

The angle of banked curve that makes the reliance on friction unnecessary is

\arcsin(v^2/(gR))

Explanation:

In order the car to stay on the curve without friction, the net force in the direction of radius should be equal or smaller than the centripetal force. Otherwise the car could slide off the curve.

The only force in the direction of radius is the sine component of the weight of the car

w_r = mg\sin(\theta)

The cosine component is equivalent to the normal force, which we will not be using since friction is unnecessary.

Newton’s Second Law states that

F_{net} = ma = mg\sin(\theta)\\\sin(\theta) = a/g

Also, the car is making a circular motion:

a = \frac{v^2}{R}

Combining the equations:

\sin(\theta) = \frac{a}{g} = \frac{v^2/R}{g} = \frac{v^2}{gR}

Finally the angle is

\arcsin(v^2/(gR))

4 0
3 years ago
If an electromagnetic wave has components Ey = E0 sin(kx - ωt) and Bz = B0 sin(kx - ωt), in what direction is it traveling?
fomenos

Answer:

Its traveling in the +x direction

Explanation:

The E-field is in the +y-direction, and the B-field is in the +z-direction, so it must be moving along the +x-direction, since the E-field, B-field and the direction of moving are all at right angles to each other.

8 0
3 years ago
Ionic compounds form between elements that are metals and<br> elements that are
NARA [144]

Answer:

nonmetals

Explanation:

Ionic compounds generally form between elements that are metals and elements that are nonmetals. For example, the metal calcium (Ca) and the nonmetal chlorine (Cl) form the ionic compound calcium chloride (CaCl2).

6 0
3 years ago
Other questions:
  • Which parts of the spectrum show the presence of elements in the stars atmosphere
    5·2 answers
  • What type of hybridization is exhibited by the nitrogen atom in the following substance pairs are present on the nitrogen?: and
    13·1 answer
  • Refer to Figure 13-2 and determine how much parent material will be left after five half-lives
    14·2 answers
  • Kim is cutting lengths of ribbon so that each length of ribbon equals 8 inches. How many centimeters does 8 inches equal
    6·1 answer
  • Children are ready for more complex storybooks:
    7·1 answer
  • (a) Define moment of a force (1mk)
    14·1 answer
  • Kuhygtfchvgbjkniljuhygutyfvghbjkljhbvghuijohbiuljkhbjiuoljkhftgyjhvgjk
    13·1 answer
  • 6. Balsa wood with an average density of 130 kg/m3 is floating in pure water. What percentage of the wood is submerged
    9·1 answer
  • Quick an answer correct answer!<br><br><br><br> ----------------
    13·1 answer
  • A car is moving along a straight line op is shown below it moves from O to P in 8sec and return to p to q in 6sec. What is the a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!