1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leto [7]
3 years ago
12

A baseball player friend of yours wants to determine his pitching speed. you have him stand on a ledge and throw the ball horizo

ntally from an elevation 4.0 m above the ground. the ball lands 30 m away.
Physics
1 answer:
zhenek [66]3 years ago
4 0

Answer:

The pitching speed of your friend is 33.20 m/s

Explanation:

<em>Lets explain how to solve the problem</em>

Your friend throw the ball horizontally that means the vertical initial

component of velocity is zero (u_{y}=0).

The ball is thrown from a height 4 meters above the ground.

The height h=u_{y}t+\frac{1}{2}gt^{2}

<u><em>Remember:</em></u> the height is negative value because its below the point of

thrown (initial position)

h = -4 m , u_{y}=0 and g = -9.8 m/s²(downward)

<em>Substitute these values in the rule above</em>

⇒ 4=0-\frac{1}{2}(9.8)t^{2}

⇒ -4 = -4.9t² (multiply both sides by -1)

⇒ 4 = 4.9t² (divide both sides by 4.9)

⇒ 0.81633 = t² (take √ for both sides)

⇒ <em>t = 0.9035</em>

Then the time of the ball to land on the ground is 0.9035 seconds

The range of the ball on the ground is 30 m

The range R=u_{x}*t, where u_{x} is the horizontal

component of the initial velocity

R = 30 meters and t = 0.9035

⇒ 30=u_{x}(0.9035) (divide both sides by 0.9035)

⇒ u_{x}=33.20 m/s

<em>The pitching speed of your friend is 33.20 m/s </em>

You might be interested in
A cart is uniformly decelerating from rest. The net force acting on the cart is
mina [271]

Answer:

i think the answer is constant

7 0
3 years ago
An orbiting satellite can become charged by the photoelectric effect when sunlight ejects electrons from its outer surface. Sate
Rufina [12.5K]

Answer:

the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm

Explanation:

Given data

Φ = 5.32 eV

to find out

the longest wavelength

solution

we know that

hf = k(maximum) +Ф   ...............1

here we consider k(maximum ) will be zero because photon wavelength max when low photon energy

so hf = 0

and hc/ λ = +Ф

so λ = hc/Ф  ................2

now put value hc = 1240 ev nm and Φ = 5.32 eV

so hc = 1240 / 5.32

hc = 233 nm

the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm

8 0
3 years ago
rocks move trough the rock cycle through uplift,folding,and faulting cased by movements of the earth´s________
garik1379 [7]
Tectonic plates and convection cells move tectonic plates
4 0
3 years ago
A stationary boat in the ocean is experiencing waves from a storm. The waves move at 59 km/h and have a wavelength of 145 m . Th
krek1111 [17]

Answer:

The time elapses until the boat is first at the trough of a wave is 4.46 seconds.

Explanation:

Speed of the wave, v = 59 km/h = 16.38 m/s

Wavelength of the wave, \lambda=145\ m

If f is the frequency of the wave. The frequency of a wave is given by :

v=f\lambda\\\\f=\dfrac{v}{\lambda}\\\\f=\dfrac{16.38\ m/s}{145\ m}\\\\f=0.112\ Hz

The time period of the wave is given by :

T=\dfrac{1}{f}\\\\T=\dfrac{1}{0.112\ Hz}\\\\T=8.92\ s

We need to find the time elapses until the boat is first at the trough of a wave. So, the time will be half of the time period of the wave.

T=\dfrac{8.92}{2}\\\\T=4.46\ s

Hence, this is the required solution.

5 0
3 years ago
A test charge of 13 mC is at a point P where an external electric field is directed to the right and has a magnitude of 4 3 106
LenKa [72]

Answer:

The magnitude of the external electric field at P will reduce to 2.26 x 10⁶ N/C, but the direction is still to the right.

Explanation:

From coulomb's law, F = Eq

Thus,

F = E₁q₁

F = E₂q₂

Then

E₂q₂ = E₁q₁

E_2 = \frac{E_1q_1}{q_2}

where;

E₂ is the external electric field due to second test charge = ?

E₁ is the external electric field due to first test charge = 4 x 10⁶ N/C

q₁ is the first test charge = 13 mC

q₂ is the second test charge = 23 mC

Substitute in these values in the equation above and calculate E₂.

E_2 = \frac{4*10^6*13}{23} = 2.26 *10^6 \ N/C

The magnitude of the external electric field at P will reduce to 2.26 x 10⁶ N/C when 13 mC test charge is replaced with another test charge of 23 mC.

However, the direction of the external field is still to the right.

8 0
3 years ago
Other questions:
  • The following diagram represents a cart with an initial velocity of 1.0 m/s sliding along a frictionless track from point A:
    9·2 answers
  • If a wave were nine feet high, how much would the amplitude be?
    6·2 answers
  • Quartz, gold and calcite are examples
    7·2 answers
  • If a 2 kg ball is traveling at a speed of 4 m/s, what is its kinetic energy?
    7·2 answers
  • A battery establishes a voltage V on a parallel-plate capacitor. After the battery is disconnected, the distance between the pla
    8·1 answer
  • What is one way a rift valley can form?
    10·2 answers
  • You have three objects of varying shapes and sizes: Object 1 is a rectangular block of tin. Object 2 is a cube of aluminum. Obje
    8·1 answer
  • The equation used to predict the theoretical period Ty of a simple pendulum assumes a small amplitude of oscillation. A student
    14·1 answer
  • Energy that is transferred from a warmer object to a cooler object is called
    6·2 answers
  • Please guys I want your help, there is 20p point
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!