Answer: 
Explanation:
Given : Sample size : n= 30 , it means it is a large sample (n≥ 30), so we use z-test .
Significance level : 
Critical value: 
Sample mean : 
Standard deviation : 
The formula to find the confidence interval is given by :-

i.e. 
i.e. 

Hence, the 95% confidence interval for the mean mpg in the entire population of that car model = 
Answer: Gunpowder
Explanation:
Gunpowder is made by mixing potassium nitrate with two fuels (atoms that can combine with oxygen atoms and release energy), carbon (charcoal) and sulfur. The oxygen atoms leave the nitrates and move onto the carbon and sulfur atoms, releasing a buttload of energy.
Presuming the arrow is between H20 and CO
On the left there are 2 gas moles.
On the right there are 4 gas moles.
The equilibrium will shift to the side with the most no. He gas moles when pressure is decreased.
Therefore the answer is A, since 4>2.
If you have any questions, feel free to ask
the correct IUPAC name of the compound is 1-Butanal.
<h3>What are IUPAC names?</h3>
It is a system of naming organic compounds based on the longest carbon-to-carbon single bonds. It does not matter whether these longest chains are continuous or in a ring.
Thus, when the compound with the chemical formula, CH3-CH2-CH2CHO is considered. The longest carbon-to-carbon chain is 4. The 1st carbon carries a functional group known as an aldehyde.
Aldehydes are equipped with the carbonyl group and have the general formula R−CH=O. They are also sometimes referred to as formyl.
Aldehydes are named after their parent alkane chains with a slight modification. The 'e' is replaced with 'al'
The aldehyde in this case has four carbons. This means that the parent alkane is Butane. Therefore, the name of the compound will be 1-Butanal.
More on IUPAC names can be found here: brainly.com/question/16631447
#SPJ1
Answer:
d = 0.793 g/L
Explanation:
Given data:
Density of fluorine gas = ?
Pressure of gas = 0.554 atm
Temperature of gas = 50 °C (50+273.15K = 323.15 K)
Solution:
Formula:
PM = dRT
M = molar mass of gas
P = pressure
R = general gas constant
T = temperature
d = PM/RT
d = 0.554 atm × 37.99 g/mol / 0.0821 atm.L /mol.K × 323.15 K
d = 21.05 atm.g/mol/26.53 atm.L /mol
d = 0.793 g/L