Answer:
The time constant is 1.049.
Explanation:
Given that,
Charge 
We need to calculate the time constant
Using expression for charging in a RC circuit
![q(t)=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=q%28t%29%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)
Where,
= time constant
Put the value into the formula
![0.65q_{0}=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=0.65q_%7B0%7D%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)





Hence, The time constant is 1.049.
Hello!
A stretched spring has 5184 J of elastic potential energy and a spring constant of 16,200 N/m. What is the displacement of the spring ?
Data:



For a spring (or an elastic), the elastic potential energy is calculated by the following expression:

Where k represents the elastic constant of the spring (or elastic) and x the deformation or displacement suffered by the spring.
Solving:









Answer:
The displacement of the spring = 0.8 m
_______________________________
I Hope this helps, greetings ... Dexteright02! =)
<u>Answer:</u>
<em>Thunderbird is 995.157 meters behind the Mercedes</em>
<u>Explanation:</u>
It is given that all the cars were moving at a speed of 71 m/s when the driver of Thunderbird decided to take a pit stop and slows down for 250 m. She spent 5 seconds in the pit stop.
Here final velocity 
initial velocity
distance
Distance covered in the slowing down phase = 







The car is in the pit stop for 5s 
After restart it accelerates for 350 m to reach the earlier velocity 71 m/s





total time= 
Distance covered by the Mercedes Benz during this time is given by 
Distance covered by the Thunderbird during this time=
Difference between distance covered by the Mercedes and Thunderbird
= 
Thus the Mercedes is 995.157 m ahead of the Thunderbird.
Answer:
the train is moving at the speed of v = 1.79 m/s
Explanation:
given,
rain drop is falling vertically down with the speed of = 3.84 m/s
angle of the rain drop = 25°
tan θ =
tan 25° =
v =3.84 × tan 25°
v = 1.79 m/s
hence, the train is moving at the speed of v = 1.79 m/s