Answer:
A. The model was the result of hundreds of years of experiments.
Explanation:
Since it is not possible to visualize an atom in isolation, scientists have spent hundreds of years experimenting and creating atomic models, that is, images that serve to explain the constitution, properties and behavior of atoms.
The earliest who imagined the existence of the atoms were the Greek philosophers Leucippus and Democritus in about 450 BCE. According to them, everything would be formed by tiny indivisible particles. Hence the origin of the name "atom", which comes from the Greek a (no) and tome (parts).
But in the nineteenth century, some scientists began to conduct experimental tests increasingly accurate thanks to technological advances. Not only was it discovered that everything was actually made up of tiny particles, but it was also possible to understand more and more about the atomic structure.
Scientists used the information discovered by other scholars to develop the atomic model. In this way, the discoveries of one scientist were replaced by those of others. The concepts that were correct remained, but those that proved to be non-real were now abandoned. Thus, new atomic models were created. This series of discoveries of the atomic structure until arriving at the accepted models today was known like the evolution of the atomic model.
Answer:
DOUBLE CHECK BECUASE IM ONLY 68.030303039999999% SURE!!!
(ANSWER IS HERE) ( D) It lacked practical examples in supporting theory
Know it's not B becuase there was no scientific community back then.
Know it's not C becuase it actully had lots of evidence.
But I'm not sure about A
Mercury has a high boiling point of 357 degrees C.
Mercury has a freezing point of −39 degrees C.
R = ρ L/A. R= resistance, ρ= resistivity, L= length of the conductor. A = area of the conductor. Resistance is directly proportional to the length of the conductor. So if length of the conductor is decreased, resistance will also decrease. Hence A is the correct option
Answer: 91.4 J
Explanation:
Kinetic energy is the energy possessed by a body due to virtue of its motion.
K.E. = 0.5 m v²
Mass of the continent is given, m = 1.819 × 10²¹ kg
Side of the block of continent, s = 4150 km = 4150000 m
Depth of the block of continent, d = 38 km = 38000 m
(Mass = density × volume
m = 2780 kg/m³× (4150 × 10³ m)²× 38 × 10³ m = 1.819 × 10²¹ kg)
The continent is moving at the rate of, v = 1 cm /year = 0.01 m / 31556926 s = 3.17 × 10⁻¹⁰ m/s
⇒ K.E. = 0.5 × 1.819 × 10²¹ kg × (3.17 × 10⁻¹⁰ m/s)²= 91.4 J
Hence, mass of the continent has 91.4 J of kinetic energy.