Kinetic energy is the energy possessed by an object when that object is moving in space. The higher the mass of an object or higher the speed of an object the higher the kinetic energy will be.
So to calculate the Kinetic Energy we can use the following formula
K.E=(1/2)*m*v^2
Inserting the values in formula gives:
K.E=1/2*7.26*2^2
14.52J
This is the final answer which gives the kinetic energy of the ball.
First the velocity drops to zero in 1.2 secs. In those seconds it went upwards for 7.2 m, then it went from 87.2 to 0m. x-x0=v0*t+1/2*g*t^2 ergo t=sqrt(2x/g) that is 4.1761 s. Finally the total time required is 5.3761 s
The power dissipated across a component can be calculated through the formula P=I^2xR
Substituting the values in we get P=(0.5)^2x10=2.5W
To calculate the ideal mechanical advantage for an inclined plane, divide th length of the incline by the height of the incline.
Therefore; IMA = L/h
L= 3.0 m, while h =1.0 m
IMA = 3/1
= 3
Therefore the IMA of the ramp is 3
This means the ramp increases the force that is being exerted by 3 times.
Answer:
the application of scientific knowledge for practical purposes, especially in industry. Another answer:the sum of techniques,skills,methods and processes used in the production of goods or services or in the accomplishment of objectives, such as scientific investigation