The extrapolated temperature is used to define the maximum temperature of the mixture relatively than the highest recorded temperature in which the conclusion will effect in a higher specific heat value. Heat is bound to escape from whatever apparatus is using, therefore it is needed to account for the loss of the heat that does not go into increasing the temperature of the mixture.
Answer:
a = 0.55 m / s²
Explanation:
The centripetal acceleration is given by the relation
a = v² / r
angular and linear velocities are related
v = w r
we substitute
a = w² r
In the exercise they indicate the angular velocity w = 1 rev/min, let's reduce to the SI system
w = 1 rev / min (2pi rad / 1rev) (1min / 60s) = 0.105 rad/ s
let's calculate
a = 0.105² 50.0
a = 0.55 m / s²
Answer:
1 astronomical unit is the average distance from the Earth to the Sun; approximately 150 million km. At its closest point, Saturn is 9 AU, and then at its most distant point, it's 10.1 AU. Saturn's average distance from the Sun is 9.6 AU. We have written many articles about Saturn for Universe Today.
Explanation:
I believe the correct answer from the choices listed above is the second option It is during sublimation that molecules directly move from state to state involving a vibration of particles in a fixed position to a state involving random movement of high speed particles. It <span> is the transition of a substance directly from the solid to the gas phase without passing through the intermediate liquid phase. </span>
To solve this problem we will apply the energy conservation theorem for which the work applied on a body must be equivalent to the kinetic energy of this (or vice versa) therefore


Here,
m = mass
= Velocity (Final and initial)
First case) When the particle goes from 10m/s to 20m/s



Second case) When the particle goes from 20m/s to 30m/s



As the mass of the particle is the same, we conclude that more energy is required in the second case than in the first, therefore the correct answer is A.