Answer:
Explanation:
We shall apply work energy theorem to calculate the initial velocity just after the collision .
Their kinetic energy will be equal to work done by friction .
force of friction = μ mg , where μ is coefficient of friction , m is total mass and g is acceleration due to gravity
force = .463 x 3210 x 9.8
= 14565.05 N
work done = force x displacement
= 14565.05 x 14.54 = 211775.88 J
now applying work energy theorem
1/2 m v² = 211775.88 , m is composite mass , v is velocity just after the collision
.5 x 3210 x v² = 211775.88
v² = 131.94
v 11.48 m /s
A. 320 g
B. 160 g
C. 80 g
D. 40 g
Answer:
<em>17 m/s west</em>
Explanation:
Runner 1 has velocity = 10 m/s west
runner 2 has velocity = 7 m/s east
From the frame of reference of runner 2, we can imagine runner 2 as standing still, and runner 1 moving away from him, towards the west with their combined velocity of
velocity = 10 m/s + 7 m/s = <em>17 m/s west</em>
Newton's second law states that the force applied to an object is equal to the product between the mass m of the object and its acceleration a:

Using

and

, we can find the value of the force applied to the roller-blade to obtain this acceleration:
Both ve similar equations
<span>both are energies of one object w.r.t another </span>
<span>differences- electric pe is due to electrostatic force and gravitational pe is due to gravitational force </span>
<span>electric pe is > than gravitational pe since electrostatic force> gravitational force </span>
<span>electron bound in an atom ll ve largest potential enegy in its ground state. i think hope it helps</span>