Info: Al(oh)3 might be an improperly capitalized: Al(OH)3
Error: Some elements or groups in the reagents are not present in the products: O
Error: equation Al4C3+H2O=Al(oh)3+CH4 is an impossible reaction
Please correct your reaction or click on one of the suggestions below:
Al4C3 + H2O = Al(OH)3 + CH4
Answer:
it has six significant figures
Answer:
The 3rd answer down.
Na²O (sodium oxide) will be a base when exposed to water H²O
Explanation:
Sodium Oxide Na²O, will become Sodium Hydroxide after being exposed to water (at 80% I believe).
The oxygen ion in Na²O has 2 extra electrons which makes it highly charged and very attractive to hydrogen ions. The attraction is so strong that when Na²O comes in contact with H²O, the O(-2) strips off a hydrogen from water, forming 2 x OH ions which of course are still strongly basic.
Answer:
1.99 atm
Explanation:
Step 1:
Data obtained from the question. This include the following:
Initial pressure (P1) = 0.520 atm
Initial temperature (T1) = 26.2°C
Initial volume (V1) = 15.4L
Final temperature (T2) = constant = 26.2°C
Final volume (V2) = 4.02L
Final pressure (P2) =..?
Step 2:
Determination of the new pressure of the gas.
Since the temperature of the gas is constant, it means the gas is obeying Boyle's law. Thus, the new pressure of the gas can be obtained by applying the Boyle's law equation as shown below:
P1V1 = P2V2
0.520 x 15.4 = P2 x 4.02
Divide both side by 4.02
P2 = (0.520 x 15.4) / 4.02
P2 = 1.99 atm
Therefore, the new pressure of the gas is 1.99 atm
A solute is the substance to be dissolved (sugar). The solvent is the one doing the dissolving (water). The amount of solute that can be dissolved by the solvent is defined as solubility. Water can form a gas f hotnot heated and if you put something cold in the water that has that was formed can be dissolved by that cold substance.