Answer:
The power she can generate is 185.22 KW.
Explanation:
<h3><u>DATA</u></h3>
3.00m wide and 0.500m deep.
Cross sectional area = 1.500m^2
Velocity = 1.35m/s
Volumetric flow rate = Av = 18.00m^3/s
Mass flow rate = 18,000kg/s
Height = 4.20m
25.0% efficiency
<h3><u>
FORMULA:</u></h3>
P = dE / dt * eff
<h3><u>
SOLUTION:</u></h3>
18,000kg/s (9.8m/s^2) (4.20m) (25%) = 185,220 watts
= 185 kw
Answer:
Explanation:
Given
Train travels towards south with a velocity if 
Rain makes an angle of
with vertical
If an observer sees the drop fall perfectly vertical i.e. horizontal component of rain velocity is equal to train velocity
suppose
is the velocity of rain with respect to ground then



Therefore velocity of rain drops is 27.36 m/s
<span>Answer:
No, because Einstein demonstrated that nothing can exceed the speed of light in a vacuum and for something to happen instantly over that distance would require that speed to be exceeded. If somehow the sun were to vanish, without explosive effects, an enormous gravity wave would begin travelling outward affecting the planets at the speed of light - thus taking about 8 minutes to reach earth.
But that is irrelevant because the only way to remove all that matter would be total conversion of the mass to energy and that energy would totally destroy everything - after the same 8 minutes.
Mike1942f · 9 years ago</span>
Answer:
F = - 3.53 10⁵ N
Explanation:
This problem must be solved using the relationship between momentum and the amount of movement.
I = F t = Δp
To find the time we use that the average speed in the contact is constant (v = 600m / s), let's use the uniform movement ratio
v = d / t
t = d / v
Reduce SI system
m = 26 g ( 1 kg/1000g) = 26 10⁻³ kg
d = 50 mm ( 1m/ 1000 mm) = 50 10⁻³ m
Let's calculate
t = 50 10⁻³ / 600
t = 8.33 10⁻⁵ s
With this value we use the momentum and momentum relationship
F t = m v - m v₀
As the bullet bounces the speed sign after the crash is negative
F = m (v-vo) / t
F = 26 10⁻³ (-500 - 630) / 8.33 10⁻⁵
F = - 3.53 10⁵ N
The negative sign indicates that the force is exerted against the bullet