<u>Answer:</u> The correct answer is that they are formed below Earth's surface.
<u>Explanation:</u>
Plutons are defined as the intrusive igneous rocks named as plutonic rocks which are formed when the magma gets cools down slowly and solidifies below the Earth's surface.
It is different from volcanic rocks which are formed when lava gets cools down and solidifies on the Earth's surface.
Hence, the correct answer is that they are formed below Earth's surface.
Answer: A group 1 alkali metal bonded to fluoride, such as LiF.
Explanation:
Electronegativity is defined as the property of an element to attract a shared pair of electron towards itself. The size of an atom increases as we move down the group because a new shell is added and electron gets added up.
1. A strong acid made of hydrogen and a halogen, such as HCl : A polar covalent bond is defined as the bond which is formed when there is a difference of electronegativities between the atoms. Electronegativity difference = electronegativity of chlorine - electronegativity of hydrogen = 3-2.1= 0.9
2. A group 1 alkali metal bonded to fluoride, such as LiF: Ionic bond is formed when there is complete transfer of electron from a highly electropositive metal to a highly electronegative non metal.
Electronegativity difference = electronegativity of fluorine - electronegativity of lithium= 4-1= 3
3. Carbon bonded to a group 6A (16) nonmetal chalcogen, such as in CO: A polar covalent bond is defined as the bond which is formed when there is a difference of electronegativities between the atoms.
Electronegativity difference = electronegativity of oxygen - electronegativity of carbon= 3.5-2.5= 1.0
4. A diatomic gas, such as nitrogen : Non-polar covalent bond is defined as the bond which is formed when there is no difference of electronegativities between the atoms.
Electronegativity difference = 0
Thus the greatest electronegativity difference between the bonded atoms is in LiF.
Answer:
176984.38J
Explanation:
E = mC∆T
Where E is the energy in joules
M is the mass of water
C is the specific heat capacity of water =4.184J/g°C
It is known that it will take 4.184J of energy to change the temperature of water by one degree Celsius.
∆T = 98.6°c - 5.4°c
= 93.2°c
∆H = 454.3g × 4.18J/g°C × 93.2°c
= 176984.3768
176984.38J
The heat from the hotter water will go into the colder water untl equilibrium is reached. Equilibrium is same temperature!
Now, the heat is proportional to the mass, the specific heat and the temperature difference. The specific heat does not matter since all is water, it will cancel out:
m_1 * c_H20 * ( T_final - T_1 ) = -m_2 * c_H20 * ( T_final - T_2)
Notice the minus, because one wins the heat of the one who loses it. In this way both sides have the same sign:
m_1*(T_final - T_1)=-m_2*(T_final-T_2), or after some simple algebra:
T_final = (m_1 * T_1 + m_2 * T_2 )/(m_1+m_2),
which looks like an arithmetic mean, and one could have gone for this, but the above shows all the work. Notice that if T_1=T_2, T_final=T_1 always, which makes sense.
Now you can convert volume to mass with the density, but since mass = density*volume and it is all water, the density will cancel out and you can work with volumes. If you prefer just say: 120 ml->120 g , etc ...
T_final = (120*95+320*25)/(320+120)=44.0909 degrees Celsius, or ~ 44.09 degrees with two decimal precision as your statement (beware of precision always!).
Answer:
A ) MOVIMIENTO
Explanation:
PLEASE MARK ME AS BRAINLIEST