A star is located 5.9 light years from Earth.
We know that : 1 light year = 9.46 trillion kilometers.
We will calculate the distance in trillion kilometers multiplying the number of light years by 9.46:
5.9 * 9.46 = 55.814
Answer: The distance is 55.814 trillion km.
The block that has a higher temperature describes the thermal energy of these blocks. Thermal energy is a measure of internal energy - therefore, the block with the higher temperature has more internal energy than the block with the lower temperature, meaning it's thermal energy is greater.
<span>C.
Sample C would be best, because the percentage of the energy
in an
incident wave that remains in a reflected wave from this material
is the
smallest.
The coefficient of absorption is the percentage of incident sound
that's absorbed. So the highest coefficient of absorption results in
the smallest </span><span>percentage of the energy in an
incident wave that remains.
That's what you want. </span>
They has been very successful but they are very expensive to operate that is your answer I hope this helps
Answer:
A). A few of the positive particles aimed at a gold foil seemed to bounce back off of the thin metallic foil.
Explanation:
Scientists decided to change the model of the atom when they discovered new evidence that showed 'few of the positive particles aimed at a gold foil seemed to bounce back off of the thin metallic foil.' On this ground, <u>Rutherford concluded that atom is mostly made up of empty space and thus, he proposed a nucleus model of atom in which the atom comprises of the tiny and positively charged nucleus is surrounded by electrons with a negative charge</u>. Thus, <u>option A</u> is the correct answer.