Answer:
the cost of operating the light bulb is 72 cents.
Explanation:
Given;
cost of electricity, C = 6 cents / kW.h
power of light bulb, P = 100 W
time of light power consumption, t = 4 hours per day for 30 days
total time = 4 hours x 30 = 120 hours
Power consumed by the light bulb is calculated as;
P = 100 x 120 = 12000 w.h = 12 kW.h
Cost of power consumption = 6 cents/kWh x 12 kWh
= 72 cents
Therefore, the cost of operating the light bulb is 72 cents.
Answer:

Explanation:
Given,
For the first rocket,
- Initial velocity of the first rocket A =

- Acceleration of the first rocket =

For the second rocket,
- Initial velocity of the second rocket B =

- Displacement of both the rockets A and B = s = 0 m
Fro the first rocket,
Let 't' be the time taken by the first rocket A for whole the displacement

Let
be the acceleration of the second rocket B for the same time interval
from the kinematics,


Hence the acceleration of the second rocket B is -33.65\ m/s^2.
By definition we have to:
LOG (k2 / k1)=(-Ea/R)*(1/T1-1/T2)
Where,
k1 = 0.0117 s-1
K2 = 0.689 s-1
T1 = 400.0 k
T2 = 450.0 k
R is the ideal gas constant
R = 8.314 KJ / (Kmol * K)
Substituting
ln (0.0117/0.689)=-Ea/(8.314)*((1/400)-(1/450))
Clearing Ea:
Ea = 122 kJ
answer
<span> the activation energy in kilojoules for this reaction is
</span> Ea = 122 kJ
<span>
</span>
Light can be seen as an electromagnetic wave.
What happens when two waves, with the same frequency, superpose is called interference.
If at a certain point two waves arrive both with a crest, we have constructive interference and the amplitudes sum up, reaching the maximum value, resulting in bright spots.
If at a certain point one of the waves arrives with a crest and the other wave arrives with a trough, we have destructive interference, and the two amplitudes cancel out, resulting in dark spots.
Therefore, t<span>he dark bands on the wall are from destructive interference.</span>