Answer:
The volume of the sample is 17.4L
Explanation:
The reaction that occurs requires the same amount of CO and NO. As the moles added of both reactants are the same you don't have any limiting reactant. The only thing we need is the reaction where 4 moles of gases (2mol CO + 2mol NO) produce 3 moles of gases (2mol CO2 + 1mol N2). The moles produced are:
0.1800mol + 0.1800mol reactants =
0.3600mol reactant * (3mol products / 4mol reactants) = 0.2700 moles products.
Using Avogadro's law (States the moles of a gas are directly proportional to its pressure under constant temperature and pressure) we can find the volume of the products:
V1n2 = V2n1
<em>Where V is volume and n moles of 1, initial state and 2, final state of the gas</em>
Replacing:
V1 = 23.2L
n2 = 0.2700 moles
V2 = ??
n1 = 0.3600 moles
23.2L*0.2700mol = V2*0.3600moles
17.4L = V2
<h3>The volume of the sample is 17.4L</h3>
Advantages of using tidal energy:
-Environment-friendly
-A highly predictable energy source
-High energy density
-Operational and maintenance costs are low
-An inexhaustible source of energy
Disadvantages of using tidal energy:
-High tidal power plant construction costs.
-Negative influence on marine life forms.
-Location limits.
-The variable intensity of sea waves.
Answer:
Molarity of solution is 1.10x10⁻³ M
Explanation:
Solute NaOCl
7.4% by mass means, that in 100 grams of solution, we have 7.4 g of solute.
Molar mass of NaOCl = 74.45 g/m
Mol = Mass / Molar mass
7.4 g / 74.45 g/m = 0.099 moles
Density of solution = 1.12 g/mL
Density = Mass / volume
1.12g/mL = 100 g / volume
Volume = 100 g / 1.12g/mL = 89.3 mL
Molarity = mol /L
89.3 mL = 0.0893 L
0.099 moles / 0.0893 L = 1.10x10⁻³ M
Answer:
Electrons can jump from energy level to energy level (for example energy level 1 to 2) but they can NEVER be found in between energy levels.