1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wittaler [7]
3 years ago
7

50 points !! I need help asap.......Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to t

he ground. Think about the amounts of potential and kinetic energy the bowling ball has:
• as it sits on top of a building that is 40 meters tall.
• as it is half way through a fall off a building that is 40 meters tall and travelling 19.8 meters per second.
• as it is just about to hit the ground from a fall off a building that is 40 meters tall and travelling 28 meters per second.


1. Does the bowling ball have more potential energy or kinetic energy as it sit on top of the building? Why?
Answer:
2. Does the bowling ball have more potential energy or kinetic energy as it is half way through its fall? Why?
Answer:
3. Does the bowling ball have more potential energy or kinetic energy just before it hits the ground? Why?
Answer:
4. What is the potential energy of the bowling ball as it sits on top of the building?
Answer:
5. What is the potential energy of the ball as it is half way through the fall, 20 meters high?
Answer:
6. What is the kinetic energy of the ball as it is half way through the fall?
Answer:
7. What is the kinetic energy of the ball just before it hits the ground?
Answer:
Physics
1 answer:
r-ruslan [8.4K]3 years ago
4 0

1) At the top of the building, the ball has more potential energy

2) When the ball is halfway through the fall, the potential energy and the kinetic energy are equal

3) Before hitting the ground, the ball has more kinetic energy

4) The potential energy at the top of the building is 784 J

5) The potential energy halfway through the fall is 392 J

6) The kinetic energy halfway through the fall is 392 J

7) The kinetic energy just before hitting the ground is 784 J

Explanation:

1)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g is the acceleration of gravity

h is the height relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where v is the speed of the object

When the ball is sitting on the top of the building, we have

  • h=40 m, therefore the potential energy is not zero
  • v=0, since the ball is at rest, therefore the kinetic energy is zero

This means that the ball has more potential energy than kinetic energy.

2)

When the ball is halfway through the fall, the height is

h=20 m

So, half of its initial height. This also means that the potential energy is now half of the potential energy at the top (because potential energy is directly proportional to the height).

The total mechanical energy of the ball, which is conserved, is the sum of potential and kinetic energy:

E=PE+KE=const.

At the top of the building,

E=PE_{top}

While halfway through the fall,

PE_{half}=\frac{PE_{top}}{2}=\frac{E}{2}

And the mechanical energy is

E=PE_{half} + KE_{half} = \frac{PE_{top}}{2}+KE_{half}=\frac{E}{2}+KE_{half}

which means

KE_{half}=\frac{E}{2}

So, when the ball is halfway through the fall, the potential energy and the kinetic energy are equal, and they are both half of the total energy.

3)

Just before the ball hits the ground, the situation is the following:

  • The height of the ball relative to the ground is now zero: h=0. This means that the potential energy of the ball is zero: PE=0
  • The kinetic  energy, instead, is not zero: in fact, the ball has gained speed during the fall, so v\neq 0, and therefore the kinetic energy is not zero

Therefore, just before the ball hits the ground, it has more kinetic energy than potential energy.

4)

The potential energy of the ball as it sits on top of the building is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 40 m is the height of the building, where the ball is located

Substituting the values, we find the potential energy of the ball at the top of the building:

PE=(2)(9.8)(40)=784 J

5)

The potential energy of the ball as it is halfway through the fall is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 20 m is the height of the ball relative to the ground

Substituting the values, we find the potential energy of the ball halfway through the fall:

PE=(2)(9.8)(20)=392 J

6)

The kinetic energy of the ball halfway through the fall is given by

KE=\frac{1}{2}mv^2

where

m = 2 kg is the mass of the ball

v = 19.8 m/s is the speed of the ball when it is halfway through the  fall

Substituting the values into the equation, we find the kinetic energy of the ball when it is halfway through the fall:

KE=\frac{1}{2}(2)(19.8)^2=392 J

We notice that halfway through the fall, half of the initial potential energy has converted into kinetic energy.

7)

The kinetic energy of the ball just before hitting the ground is given by

KE=\frac{1}{2}mv^2

where:

m = 2 kg is the mass of the ball

v = 28 m/s is the speed of the ball just before hitting the ground

Substituting the values into the equation, we find the kinetic energy of the ball just before hitting the ground:

KE=\frac{1}{2}(2)(28)^2=784 J

We notice that when the ball is about to hit the ground, all the potential energy has converted into kinetic energy.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

You might be interested in
Io experiences tidal heating primarily because __________. hints io experiences tidal heating primarily because __________. io i
maxonik [38]
Lo experiences tidal heating primarily because lo’s elliptical orbit causes the tidal force on lo to vary as it orbits the Jupiter. Thus, lo’s elliptical orbit is essential to its tidal heating. This elliptical orbit, in turn, is an end result of the orbital resonance among lo, Europa and ganymade. This orbital resonance origin lo to have a more elliptical orbit than it would because lo intermittently passes Europa and ganymade in the same orbital position. We cannot perceive tidal forces of tidal heating in lo but rather we foresee that they must occur based on the orbital characteristic of the moons and active volcanoes on lo is the observational evidence that tidal heating is significant in lo.
8 0
3 years ago
I need the answer for both of the questions please
Lady_Fox [76]
But even more pain on pain and then pain and pain ya feel me and even more pain okay and yes more pain
5 0
3 years ago
3.5
11111nata11111 [884]

Answer:

mass of hot water must be 97.80

Explanation:

3 0
2 years ago
A lever is used to lift a heavy rock. The mechanical advantage of the lever is 4 and the lever applies a force of 800 N to the r
Lesechka [4]
 The force applied to the lever is 400 N, because the force applied by the lever (800 N) divided by the mechanical advantage of the lever (4) equals
400 N.

(800/4) = 200
7 0
3 years ago
The intensity of electromagnetic radiation from the sun reaching the earth's upper atmosphere is 1.37kW/m2kW/m2. Part A Assuming
Juli2301 [7.4K]

Answer:

#_photon = 7  10²¹ photons

Explanation:

Let's look for the power that affects the panel of area of ​​1.5 m2

           I = P / A

           P = I A

           P = 1.37 10³  1.5

           P = 2,055 10³ W

           P = E / t

       

If we use t = 1 s

           E = P t

           E = 2,055 10³ J

This is the power that the panel receives, let's look for the energy of a photon

            E = h f

            c = λ f

            f = c /λ

            E = h c /λ

Let's calculate

            E₀ = 6.63 10⁻³⁴  3 10⁸/680 10⁻⁹

            E₀ = 2.925 10⁻¹⁹ J

In one second the total energy is the number of photons for the energy of each one

             E = #_photon  E₀

             #_photon = E / E₀

             #_photon = 2,055 10³ / 2,925 10⁻¹⁹

            #_photon = 7  10²¹ photons

8 0
3 years ago
Other questions:
  • A fish appears to be 2.00 m below the surface of a pond (nwater = 1.33) when viewed almost directly above by a fisherman. What i
    7·2 answers
  • What is energy efficiency
    12·1 answer
  • Sasha did an experiment to study the solubility of two substances. She poured 100 mL of water at 20 °C into each of two beakers
    11·1 answer
  • The boiling point for liquid nitrogen at atmospheric pressure is 77k. Is the temperature of an open container of liquid nitrogen
    7·1 answer
  • Why does a buoyant force act on every object in a fluid?
    10·1 answer
  • What is the weight of an object on the earth with a mass of 70 kg. <br> (g= 10 m/s2)
    14·1 answer
  • Why would it probably be very difficult to determine the chemical and physical properties of a newly discovered synthetic elemen
    14·2 answers
  • Identifying the factors contributing to and acting as determinant factors of health disparities during the program theory and de
    12·1 answer
  • Yal it's late and I just want to finish this quiz and go to sleep. please give me a correct answer.
    12·1 answer
  • Throw two balls from the same height at the same time at an initial speed of 20 m/s. One is thrown vertically down, while the ot
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!