Answer:
Yes. Towards the center. 8210 N.
Explanation:
Let's first investigate the free-body diagram of the car. The weight of the car has two components: x-direction: towards the center of the curve and y-direction: towards the ground. Note that the ground is not perpendicular to the surface of the Earth is inclined 16 degrees.
In order to find whether the car slides off the road, we should use Newton's Second Law in the direction of x: F = ma.
The net force is equal to 
Note that 95 km/h is equal to 26.3 m/s.
This is the centripetal force and equal to the x-component of the applied force.

As can be seen from above, the two forces are not equal to each other. This means that a friction force is needed towards the center of the curve.
The amount of the friction force should be 
Qualitatively, on a banked curve, a car is thrown off the road if it is moving fast. However, if the road has enough friction, then the car stays on the road and move safely. Since the car intends to slide off the road, then the static friction between the tires and the road must be towards the center in order to keep the car in the road.
<span>The shortening velocity refers to the speed of the contraction from the muscle shortening while lifting a load. Maximal shortening velocity is only attained with a minimal load. With a light load, the shortening velocity is at its Maximal shortening velocity. When the weight is heavy, the speed in which the muscle lifts the weight decreases in speed at a slower velocity.</span>
Answer:
2 in front of water and 1 in front of oxygen
Explanation:
This question is describing balancing a chemical reaction. A balanced chemical reaction has the same number of atoms of each elements on both the reactant and product side. According to the question, the reactants contains 4 atoms of oxygen. The reactants give rise to water (H20) and O2 in the products side.
This reaction is most likely the decomposition of hydrogen peroxide (H2O2) as follows:
H2O2 (l) ----> H2O (l) + O2(g)
Based on the description, H2O2 will be 2H2O2 as it is said to contain four atoms of oxygen. This means that, in order to have a balanced equation, we must place coefficient 2 in front of water and coefficient 1 in front of oxygen. That is;
2H2O2 (l) ----> 2H2O (l) + O2(g)
Draw a diagram to illustrate the problem as shown below.
The vertical component of the launch velocity is
v = (8.5 m/s)*sin30° = 4.25 m/s
The horizontal component of the launch velocity is
8.5*cos30° = 7.361 m/s
Assume that aerodynamic resistance may be ignored.
Because the horizontal distance traveled is 19 m, the time of travel is
t = 19/7.361 = 2.581 s
The downward vertical travel is modeled by
h = (-4.25 m/s)*(2.581 s) + 0.5*(9.8 m/s²)*(2.581 s)²
= 21.675 m
Answer: The height is 21.7 m (nearest tenth)
Answer:

Explanation:
We have to use the centripetal force equation

we need the radious so we have to isolate "r" and we get

replacing m=65 kg, v= 4.1 m/s and Fc=455N we get


The radius of the amusement park chamber is 2.4m