The correct answer is Thermal Equilibrium
Explanation:
The term "thermal equilibrium" is used when two or more objects have the same temperature and therefore there is not an exchange of heat between them. This occurs when the objects had a different temperature at the beginning but due to a close contact heat is transferred from one object to the other until an equilibrium or same temperature is reached. For example, a hot cup over a table or any other surface will transfer the heat to the surface, but after some time both the cup and the surface will have the same temperature or will reach thermal equilibrium.
Hg(No3)2 +NaSO4 --->2NaNO3 + HgSO4(s)
calculate the moles of each reactant
moles=mass/molar mass
moles of Hg(NO3)2= 51.429g/ 324.6 g/mol(molar mass of Hg(NO3)2)=0.158 moles
moles Na2SO4 16.642g/142g/mol= 0.117 moles of Na2SO4
Na2SO4 is the limiting reagent in the equation and by use mole ratio Na2So4 to HgSO4 is 1:1 therefore the moles of HgSO4 =0.117 moles
mass of HgSO4=moles x molar mass of HgSo4= 0.117 g x 303.6g/mol= 35.5212 grams
Protons have a mass of 1
Neutrons have a mass of 1
So 13*1 + 14*1 = Mass number 27
Answer:
290 grams
Explanation:
Let's begin by writing the balanced chemical equations:

Then we calculate the number of moles in 97g of propane.
n(propane)=
According to the balanced chemical equation, one mole of propane produces 3 moles of carbon dioxide. So the available number of moles of propane must be multiplied by three to work out the number of carbon dioxide produced.
n(carbon dioxide)= 2.1995mol*3 = 6.5985mol
mass(carbon dioxide) = moles * molar mass
= 6.5985 mol * 44.01 g/mol
= 290 grams
Answer:
Bacteria
Explanation:
On a piece of raw, fresh hamburger from the butcher's, bacteria are rapidly multiplying through asexual reproduction.