Answer:

Explanation:
The charge on one object, 
The distance between the charges, r = 0.22 m
The force between the charges, F = 4,550 N
Let q₂ is the charge on the other sphere. The electrostatic force between two charges is given by the formula as follows :

So, the charge on the other sphere is
.
Expansion work against constant external pressure: w=-pex Δ Δ V 3. The attempt at a solution . I tried following that. Because Vf>>Vi, and Vf=nRT/pex, then w=-pex x nRT/pex=-nRT (im assuming n is number of moles of CO2?). 1 mole of CaCO3 makes 1 mole of CO2, so plugging in numbers, I get 8.9kJ, although I dont use the 1 atm pressure at all
In reality we don't see the galaxy we see it's reflection .. the light hits or got emitted by the star travel all the way long to hit our eyes .. we see their reflection . everything around you that you see is it's reflection
The correct answer as the first one above !