If the object's <em>velocity is constant</em> ... (it's speed isn't changing AND it's moving in a straight line) ... then the net force on the object is zero.<em> (D)</em>
Either there are no forces at all acting on the object, OR there are forces on it but they're 'balanced' ... when you add up all of their sizes and directions, they just exactly cancel each other out, and they have the SAME EFFECT on the object as if there were no forces at all.
Answer:
just trace a picture of it.
In my opinion it does. The more water the pot holds, the longer you need to wait for it to freeze. Since there is more water, some parts may not be completely frozen. An experiment you can try is to get an ice cube container and a pot. fill both of them and put them in the freezer for the same amount of time. When you take it out, the ice cubes should be frozen leaving the pot with cold water.
Answer:
5.959 m/s
Explanation:
m = Mass of gymnast
u = Initial velocity
v = Final velocity
= Initial height
= Final height
From conservation of Energy



Velocity of gymnast at bottom of swing is 5.959 m/s
Answer: Impulse = 20 Ns
Explanation:
Impulse is the product of force and time
Also impulse = momentum
Where momentum is the product of mass and velocity.
Given that
M = 2kg
V = 10 m/s
Impulse = MV = 2 × 10 = 20 Ns