Answer:
a) -35.6°C
b) 237.4 K
Explanation:
To convert temperature from degree celsius to degree fahrenheit, use the formula below:

a) Therefore to convert -32°F to celsius, substitute it into the celsius

b) To covert to the Kelvin scale, use the formula below
Odpowiedź:
0,049 m / s
Wyjaśnienie:
Biorąc pod uwagę, że:
Dystans biegu = 900m
Czas trwania = 205 minut
Długość przejścia = 300 m
Zajęty czas = 205 minut
Średnia prędkość :
(Przebieg + pokonany dystans) / całkowity czas
Średnia prędkość :
(900 m +. 300 m) / 205 + 205
1200 m / 410 minut
Minuty do sekund
1200 / (410 * 60)
1200/24600
= 0,0487804
= 0,049 m / s
Answer:
oone side at a time would be hot and the other oone
Explanation:
One side will be hot and the other cold no in-between
<h3><u>Answer</u>;</h3>
-The total momentum of an isolated system is constant.
-The total momentum of any number of particles is equal to the vector sum of the momenta of the individual particles.
-The vector sum of forces acting on a particle equals the rate of change of momentum of the particle with respect to time.
<h3><u>Explanation</u>;</h3>
- Momentum is a vector quantity, and therefore we need to use vector addition when summing together the momenta of the multiple bodies which make up a system.
- The vector sum of forces acting on a particle is equivalent to the rate of change of momentum of the particle with respect to time. This is according to the Newton's second Law of motion. In mathematical terms, ֿF = d ֿp/dt, that is F= ma.
- According to the Law of conservation of Momentum, or a collision occurring between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
Answer:
Boyle's Law

Explanation:
Given that:
<u><em>initially:</em></u>
pressure of gas, 
volume of gas, 
<em><u>finally:</u></em>
pressure of gas, 
volume of gas, 
<u>To solve for final volume</u>
<em>According to Avogadro’s law the volume of an ideal gas is directly proportional to the no. of moles of the gas under a constant temperature and pressure.</em>
<em>According to the Charles' law, at constant pressure the volume of a given mass of an ideal gas is directly proportional to its temperature.</em>
But here we have a change in the pressure of the Gas so we cannot apply Avogadro’s law and Charles' law.
Here nothing is said about the temperature, so we consider the Boyle's Law which states that <em>at constant temperature the volume of a given mass of an ideal gas is inversely proportional to its pressure.</em>
Mathematically:


