Answer:
(a) 
(b) 
(c) 
(d) 
Explanation:
Hello,
In this case, given the solubility of each salt, we can compute their molar solubilities by using the molar masses. Afterwards, by using the mole ratio between ions, we can compute the concentration of each dissolved and therefore the solubility product:
(a) 

In such a way, as barium and selenate ions are in 1:1 molar ratio, they have the same concentration, for which the solubility product turns out:
![Ksp=[Ba^{2+}][SeO_4^{2-}]=(6.7x10^{-4}\frac{mol}{L} )^2\\\\Ksp=4.50x10^{-7}](https://tex.z-dn.net/?f=Ksp%3D%5BBa%5E%7B2%2B%7D%5D%5BSeO_4%5E%7B2-%7D%5D%3D%286.7x10%5E%7B-4%7D%5Cfrac%7Bmol%7D%7BL%7D%20%20%20%29%5E2%5C%5C%5C%5CKsp%3D4.50x10%5E%7B-7%7D)
(B) 

In such a way, as barium and bromate ions are in 1:2 molar ratio, bromate ions have twice the concentration of barium ions, for which the solubility product turns out:
![Ksp=[Ba^{2+}][BrO_3^-]^2=(7.30x10^{-3}\frac{mol}{L})(3.65x10^{-3}\frac{mol}{L})^2\\\\Ksp=1.55x10^{-6}](https://tex.z-dn.net/?f=Ksp%3D%5BBa%5E%7B2%2B%7D%5D%5BBrO_3%5E-%5D%5E2%3D%287.30x10%5E%7B-3%7D%5Cfrac%7Bmol%7D%7BL%7D%29%283.65x10%5E%7B-3%7D%5Cfrac%7Bmol%7D%7BL%7D%29%5E2%5C%5C%5C%5CKsp%3D1.55x10%5E%7B-6%7D)
(C) 

In such a way, as ammonium, magnesium and arsenate ions are in 1:1:1 molar ratio, they have the same concentrations, for which the solubility product turns out:
![Ksp=[NH_4^+][Mg^{2+}][AsO_4^{3-}]^2=(1.31x10^{-4}\frac{mol}{L})^3\\\\Ksp=2.27x10^{-12}](https://tex.z-dn.net/?f=Ksp%3D%5BNH_4%5E%2B%5D%5BMg%5E%7B2%2B%7D%5D%5BAsO_4%5E%7B3-%7D%5D%5E2%3D%281.31x10%5E%7B-4%7D%5Cfrac%7Bmol%7D%7BL%7D%29%5E3%5C%5C%5C%5CKsp%3D2.27x10%5E%7B-12%7D)
(D) 

In such a way, as the involved ions are in 2:3 molar ratio, La ion is twice the molar solubility and MoOs ion is three times it, for which the solubility product turns out:
![Ksp=[La^{3+}]^2[MoOs^{-2}]^3=(2*1.58x10^{-5}\frac{mol}{L})^2(3*1.58x10^{-5}\frac{mol}{L})^3\\\\Ksp=1.05x10^{-22}](https://tex.z-dn.net/?f=Ksp%3D%5BLa%5E%7B3%2B%7D%5D%5E2%5BMoOs%5E%7B-2%7D%5D%5E3%3D%282%2A1.58x10%5E%7B-5%7D%5Cfrac%7Bmol%7D%7BL%7D%29%5E2%283%2A1.58x10%5E%7B-5%7D%5Cfrac%7Bmol%7D%7BL%7D%29%5E3%5C%5C%5C%5CKsp%3D1.05x10%5E%7B-22%7D)
Best regards.
Answer:
no
Explanation:
Fluoride is not nucleophilic (having the tendency to donate electrons) enough to allow for the use of HF to cleave ethers in protic media(protic solvents are polar liquid compounds that have dissociable hydrogen atoms). The rate of reaction is comparably low, so that heating of the reaction mixture is required.
Answer:
bulb or pump, meniscus, outside
Explanation:
In order to use a pipet, place a BULB OR PUMP at the top of the pipet. Use this object to fill the pipet such that the MENISCUS of the liquid is even with the volume line. Release the liquid, touching the tip of the pipet to the side of the container if necessary to release the last drop OUTSIDE the pipet tip.
Answer:
1) It gets slower the farther out they are.
2) The farther out you are from the sun the less gravitational pull you have, which makes it go slower as it orbits.
3) Gravity ;) :)
Explanation:
Hope this helps! Plz mark as brainliest! :)