Answer:
The answer is "
"
Explanation:
The magnetic field at ehe mid point of the coils is,

Here, i is the current through the loop, R is the radius of the loop and x is the distance of the midpoint from the loop.


Calculating the force experienced through the protons:

<span>When a person lifts the block, the block has more potential energy. Therefore the person does positive work on the block.
work = m g h
work = (4.5 kg) (9.80 m/s^2) (1.2 m)
work = 52.92 joules
The person's work on the block is 52.92 joules
When the block is being raised, the force of gravity opposes the motion. Therefore the force of gravity does negative work on the block.
work = - (force) (h)
work = - m g h
work = -(4.5 kg) (9.80 m/s^2) (1.2 m)
work = -52.92 joules
The work done by the force of gravity on the block is -52.92 joules
Note that when the block is moved horizontally, the potential energy does not change. Therefore there is no work done on the block when it moves horizontally (we are assuming that the kinetic energy does not change).</span>
Answer:
92 protons
Explanation:
The mass number is
238
, so the nucleus has <u>238 particles</u> in total, including <u>146 neutrons</u>. So to calculate the number of neutrons we have to subtract: 238 − 146 = 92
I think it's C, longer wave length.
Answer:
b. The internal resistance must be much smaller than the other resistances in the circuit.
Explanation:
Ammeter is used to measure the current flowing through a circuit. It is connected in series configuration with the load. In such a scenario the resistance of the ammeter should be negligible so as to make sure that the voltage drop across the resistance of ammeter is zero and it shows the correct reading of the current in the circuit.