1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
3 years ago
14

Suppose the electric field in problems 2 was caused by a point charge. The test charge is moved to a distance twice as far from

the charge. What is the magnitude of the force that the field exerts on the test charge now ?
Physics
1 answer:
mojhsa [17]3 years ago
8 0

Answer:

it is reduced four times.

Explanation:

By definition, the electric field is the force per unit charge created by a charge distribution.

If the charge creating the field is a point charge, the force exerted by it on a test charge, must obey Coulomb´s Law, so, it must be inversely proportional to the square of the distance between the charges.

So, if the distance increases twice, as the force is inversely proportional to the square of the distance, and the square of 2 is 4, this means that the magnitude of the force exerted on the test charge must be 4 times smaller.

You might be interested in
Which example possesses mechanical potential energy?. A. a taut guitar string. B. an oscillating pendulum. C. a roller coaster r
NeTakaya
<span>
The taut guitar string haspotencial energy which we can see in action.</span>  <span>· so option a is correct.</span>
7 0
3 years ago
Read 2 more answers
A 5.67-kg block of wood is attached to a spring with a spring constant of 150 N/m. The block is free to slide on a horizontal fr
nikklg [1K]

Answer:

v=0.94 m/s

Explanation:

Given that

M= 5.67 kg

k= 150 N/m

m=1 kg

μ = 0.45

The maximum acceleration of upper block can be μ g.

 a= μ g                          ( g = 10 m/s²)

The maximum acceleration of system will ω²X.

ω = natural frequency

X=maximum displacement

For top stop slipping

μ g  =ω²X

We know for spring mass system natural frequency given as

\omega=\sqrt{\dfrac{k}{M+m}}

By putting the values

\omega=\sqrt{\dfrac{150}{5.67+1}}

ω = 4.47 rad/s

μ g  =ω²X

By putting the values

0.45 x 10 = 4.47² X

X = 0.2 m

From energy conservation

\dfrac{1}{2}kX^2=\dfrac{1}{2}(m+M)v^2

kX^2=(m+M)v^2

150 x 0.2²=6.67 v²

v=0.94 m/s

This is the maximum speed of system.

7 0
3 years ago
Read 2 more answers
A particle moves along the x-axis so that its velocity at anytime is t greater than or equal to 0 is given by v(t)=1-sin(2pi t)
UkoKoshka [18]
A) We differentiate the expression for velocity to obtain an expression for acceleration:
v(t) = 1 - sin(2πt)
dv/dt = -2πcos(2πt)
a = -2πcos(2πt)

b) Any value of t can be plugged in as long as it is greater than or equal to 0. 

c) we integrate the expression of velocity to find an expression for displacement:
∫v(t) dt = ∫ 1 - sin(2πt) dt
x(t) = t + cos(2πt)/2π + c
x(0) = 0
0 = = + cos(0)/2π + c
c = -1/2π
x(t) = t + cos(2πt)/2π -1/2π
5 0
3 years ago
1. If an object of mass m collides and velocity v collides inelastically with an object of mass 3m that is initially at rest, th
Archy [21]

Answer:

1a). 4 times. 1b) 4. 1c) 1/4.

2a) 5 times. 1b) 5 1c) 1/5

3a) 7/3 times 3b) 7/3 3c) 3/7

4a) 8/5 times 4b) 8/5 4c) 5/8

Explanation:

1) Assuming no external forces acting during the collision, total momentum must be conserved, so the following general expression applies:

m₁*v₁₀ + m₂*v₂₀ = m₁*v₁f  + m₂*v₂f (1)

If we assume that the collision is perfectly inelastic, this means that both masses stick together after the collision, so v₁f = v₂f.

If m₂ is initially at rest, ⇒ v₂₀ = 0.

Replacing in (1) we get the expression of vf as a function of v₁₀, as follows:

vf = v₁₀*(m₁/(m₁+m₂)

So, for the four cases we have the following:

1) initial mass = m

  final mass = m+3m = 4 m

⇒final mass / initial mass = 4

vf = v₀* (m/4m) = v₀/4  ⇒v₀/vf = 4

So, the velocity of the system will decrease by a factor of 4. The new velocity will be vf= v₀/4.

2) Applying the same considerations, we get:

2a)  final mass / initial mass = 5

2b) vf = v₀* (m/5m) = v₀/5  ⇒v₀/vf = 5

2c) vf = v₀/5

3) Applying the same considerations, we get:

3a)  final mass / initial mass = 7/3

3b) vf = v₀* (3m/7m) =3/7* v₀  ⇒v₀/vf = 7/3

3c) vf = 3/7*v₀

4) Applying the same considerations, we get:

4a)  final mass / initial mass = 8/5

4b) vf = v₀* (5m/8m) = 5/8*v₀ ⇒v₀/vf = 8/5

4c) vf = 5/8*v₀

3 0
3 years ago
At the moment a hot cake is put in a cooler, the difference between the cakes and the cooler's
hram777 [196]

Answer: D(t)= 50(4/5)^t

Explanation: If 1/5 of the temperature difference is lost each minute, that means 4/5 of the difference remains each minute. So each minute, the temperature difference is multiplied by a factor of 4/5 (or 0.8).

If we start with the initial temperature difference, 50° Celsius, and keep multiplying by 4/5, this function gives us the temperature difference t minutes after the cake was put in the cooler.

5 0
3 years ago
Read 2 more answers
Other questions:
  • A student is studying the potential energy change of a 50 kg object raised 110 km above Earth's surface. What will be the percen
    11·1 answer
  • The impulse experienced by a body is equivalent to the body’s change in?
    11·1 answer
  • Question 5 (1 point)
    6·1 answer
  • Why is it important for DNA to be copied before cell division?
    15·1 answer
  • Anybody know the answer to this ?
    9·1 answer
  • 1-A car with momentum 19016 kg*m/s has a mass of 1300kg. What is the speed
    11·1 answer
  • To what volume will a sample of gas expand if it is heated from 50.0°c and 2.33 l to 500.0°c?
    12·1 answer
  • What is seen as the creative force in the universe through which all things are connected?
    5·1 answer
  • a sprinter starts from rest and accelerates at a rate of 0.16 ms ^-2 over a distance of 50.0 meters . How fast is the athlete tr
    6·1 answer
  • What is the magnitude of the resultant vector? Round
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!