Answer:
Bow Line
Explanation:
If the wind or current is pushing your boat away from the dock, bow line should be secured first.
1- We should cast off the bow and stern lines.
2-With the help of an oar or boat hook, keep the boat clear of the dock.
3-Leave the boat on its own for sometime and let the wind or current carry the boat away from the dock.
4 - As you see there is sufficient clearance, shift into forward gear and slowly leave the area.
Answer:
because each row increases in atomic mass by a specific number, so anything over five is in the second row.
Answer:
1.034m/s
Explanation:
We define the two moments to develop the problem. The first before the collision will be determined by the center of velocity mass, while the second by the momentum preservation. Our values are given by,

<em>Part A)</em> We apply the center of mass for velocity in this case, the equation is given by,

Substituting,


Part B)
For the Part B we need to apply conserving momentum equation, this formula is given by,

Where here
is the velocity after the collision.



Answer:
p = 1.0076 10⁵ Pa
Explanation:
Atmospheric pressure is given by the relation
P = rho g h
In this case they indicate that the height of the column of mercury is h = 756 mm Hg
let's reduce the height to the SI system
h = 756 mm (1m / 1000 mm)
h = 0.756 m
let's calculate
P = 13600 9.8 0.756
p = 1.0076 10⁵ Pa