Answer:
vapor fraction = 0.4 and 0.08
Explanation:
At reasonably high temperatures, a mixture will exist in the form of a sub cooled liquid. Between these extremes, the mixture exists in a two phrase region where it is a vapor liquid equilibrium. From a vapor-liquid phase diagram, a mixture of 40% A, 39% B, and 21% C separates to give the vapor compositions of 0.4 and 0.08.
Answer:
(a) Increases
(b) Increases
(c) Increases
(d) Increases
(e) Decreases
Explanation:
The tensile modulus of a semi-crystalline polymer depends on the given factors as:
(a) Molecular Weight:
It increases with the increase in the molecular weight of the polymer.
(b) Degree of crystallinity:
Tensile strength of the semi-crystalline polymer increases with the increase in the degree of crystallinity of the polymer.
(c) Deformation by drawing:
The deformation by drawing in the polymer results in the finely oriented chain structure of the polymer with the greater inter chain secondary bonding structure resulting in the increase in the tensile strength of the polymer.
(d) Annealing of an undeformed material:
This also results in an increase in the tensile strength of the material.
(e) Annealing of a drawn material:
A semi crystalline material which is drawn when annealed results in the decreased tensile strength of the material.
Answer:
Engineering Controls. The best engineering controls to prevent heat-related illness is to make the work environment cooler and to reduce manual workload with mechanization. A variety of engineering controls can reduce workers' exposure to heat: Air conditioning, Increased general ventilation
, Cooling fans
, Local exhaust ventilation at points of high heat production or moisture, Reflective shields to redirect radiant heat
, Insulation of hot surfaces Elimination of steam leaks
, Cooled seats or benches for rest breaks
, Use of mechanical equipment to reduce manual work, Misting fans that produce a spray of fine water droplets.
Hope this helped you!
Explanation:
Answer:
The outer diameter of the spacers that yields the most economical and safe design is 25.03 mm
Explanation:
For steel bolt
Stress = 210 MPa or 210 N/mm2
Pressure = Stress* Area
Pbolt = 210 N/mm2 * 16^2 *(pi)/4
Pbolt = 210 N/mm2 * 200.96 mm^2 = 42201.6 N
For Brass spacer
Pressure = 42201.6 N
Area of Brass spacer = Pressure/Stress
Area of Brass spacer = 42201.6 N/145 N/mm^2 = 291.044 mm^2
Area of Brass spacer = (pi) (d^2 - 16^2)/4 = 291.044 mm^2
d^2 - 16^2 = 291.044 mm^2* 4/(pi) = 370.758
d^2 = 370.758 + 16^2
d^2 = 626.758
d = 25.03 mm
The outer diameter of the spacers that yields the most economical and safe design is 25.03 mm
Answer: y = x * 1dollars - 30dollars
Explanation:
Giving that the delivery cost in dollar is potent for all x > = 50 pounds of wght
Y = (x - 50)*1 dollar + c ...equ 1
Y = delivery cost equation in dollars
x = weigt of baggage for delivery
c = 20dollars = down payment for the first 50 pound weight of baggage
Equ 1 becomes
Y = (x)dollars - 50 dollars + 20 dollars
Y = (x) dollars -30 dollars