Answer:
9.8m/s²
Explanation:
The acceleration of the ball thrown after leaving my hand is 9.8m/s². This will be the acceleration due to gravity on the body.
- Acceleration due to gravity is caused by the pull of the earth on a massive object.
- The value of this acceleration is 9.8m/s².
- As the ball nears the surface, it comes near zero.
Customer satisfaction is considered to be the "driving force" in order to achieve an efficient supply chain. An efficient supply chain takes place when the organization, or the company itself, meets with the demands of the consumers to improve and provides services that satisfies the people.
If your speed changes from 10 km/h to 6 km/h then
you have an acceleration.
Whether it's a positive or negative one completely depends
on which direction you decided to call the positive direction,
when you started considering your speed and its changes.
If you decided to call the direction in which you're traveling
the positive direction, then a decrease in your speed is a
negative acceleration.
But you could just as easily have said that you're traveling
in the negative direction. If you did that, then a decrease in
your speed would be a positive acceleration.
It's completely up to you, and how you define things.
Answer:
The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.
Explanation:
Given that,
Mass of object = 5 kg
Speed = 3 m/s
Mass of stationary object = 3 kg
Moving object deflected = 30°
Stationary object deflected = 31°
We need to calculate the velocity of each ball after collision
Using conservation of momentum
Along x-axis

Put the value into the fomrula


....(I)
Along y -axis

Put the value into the formula

...(II)
From equation (I) and (II)


Put the value of v₁ in equation (I)



Hence, The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.