Answer:
X(t) = 9.8 *t - 4.9 * t^2
Explanation:
We set a frame of reference with origin at the hand of the girl the moment she releases the ball. We assume her hand will be in the same position when she catches it again. The positive X axis point upwards.The ball will be subject to a constant gravitational acceleration of -9.81 m/s^2.
We use the equation for position under constant acceleration:
X(t) = X0 + V0 * t + 1/2 * a *t^2
X0 = 0 because it is at the origin of the coordinate system.
We know that at t = 2, the position will be zero.
X(2) = 0 = V0 * 2 + 1/2 * -9.81 * 2^2
0 = 2 * V0 - 4.9 * 4
2 * V0 = 19.6
V0 = 9.8 m/s
Then the position of the ball as a function of time is:
X(t) = 9.8 *t - 4.9 * t^2
False, that does not apply to some
Answer:
1 sec
Explanation:
Horizontal distance (x) = 6m
Vertical distance (y) = 1.25m
Hang time is the duration the object is in the air before it reaches maximum height.
The time of free fall is given by
t = √2y/g
g = acceleration due to gravity
t = √(2*1.25)/9.8
t = √2.5/9.8
t = 0.5secs
Hang time = 2*0.5
= 1 sec
Answer:
TRUE
Explanation:
Low mass stars last lots longer.
Because it's the planet in our solar system with the shortest,
fastest orbit around the sun ... only 88 Earth days.
The people who named it didn't know that ... they still thought that
the sun and all the planets revolve around the Earth. But they did
see it zip from one side of the sun to the other, faster than any other
planet ... the result of having the shortest, fastest orbit of any planet.