Answer:
6.07 L
Explanation:
It appears that the reading has been made at constant pressure .
At constant pressure , the gas law formula is
V/T = constant V is volume and T is temperature of the gas.
V₁ / T₁ = V₂ / T₂
V₁ = 6.6 L ,
T₁ = 40°C
= 273 + 40
= 313 K
T₂ = 15+ 273
= 288K
V₂ = ?
Putting the values in the formula above
6.6 / 313 = V₂ / 288
V₂ = 6.07 L.
<span>When one talks about ppm in a liquid solution someone means mg/L so we would not be using the density. This usually means ug/g or mg/kg
0.115 g Na^+ * 10^6 ug/1 g = 115000 ug/g
4.55 L * 1000 mL/1L = 4550 mL
Concentration of Na^+ in ppm:
115000 ug/g /4550 mL = 25.27 pm of sodium ion</span>
Answer:
its radiation
Explanation:
just googled it rn trust me
<span>The problem has to do with oxidation states of the matter. The oxidation state of oxygen will always be -2 with the exception of peroxides which will have a state of -1. The overall balanced state of chemical compounds will be 0, so the oxidation state of Mn in MnO2 will be +4. The oxidation state of MnO4- will then be +7 to balance out to the negative one charge. The state change from +4 to +7 is 3, thus three electrons have to be lost in order for this to happen; a loss of a charge of -3 results in an increase of charge of 3. Oxidation is always the process of 'losing' electrons.
</span><span>E] MnO2(s) MnO4-(aq</span>
If 4 moles of P is used by 5 mole of O2
then....0.489 moles will be used by 5/4 × .489 = .611 moles of O2
so .611 moles
so if 4 moles of P is burnt , 1 mole of P4O10 is produced ....so for .489 moles...... .489/4=.122 moles !
so mass will be .122× 283.89 = 34.7 grams
so first ans is .611 moles and second is 34.7 grams !
if you have any problem regarding this , just comment !!!