Answer:
The astronaut can throw the hammer in a direction away from the space station. While he is holding the hammer, the total momentum of the astronaut and hammer is 0 kg • m/s. According to the law of conservation of momentum, the total momentum after he throws the hammer must still be 0 kg • m/s. In order for momentum to be conserved, the astronaut will have to move in the opposite direction of the hammer, which will be toward the space station.
Explanation:
Answer:
We have to show surface area
,with few conditions that is by considering Force
and Pressure
to be respectively.
Explanation:
The atmospheric pressure is
on Earth's surface.
The magnitude of the force exerted on a person by the atmosphere is
.
Now to calculate surface area we can find it from
and re-arranging it to.

So plugging the values,
Surface area 
Hence from the above calculations we can say that surface area is
.
So the surface area of an average person can be said to have
, using the concept of pressure and force.
Since there is no friction between the ladder and the wall, there can be no vertical force component. That's the tricky part ;)
So to find the weight, divide the 100N <em>normal</em> force by earths gravitational acceleration, 9.8m/s^2

Then;
Draw an arrow at the base of the ladder pointing towards the wall with a value of 30N, to show the frictional force.
Can someone help me with a question? At the local ski park, James earns 519.36 for working 32 hours. Create a double number line to identify the amount of money he would make for 1, 8 and 40 hours of work?