<span>The correct answer is the attractive force. The name given to the force of attraction of the electrons of one atom for the protons of another atom in close proximity is called the attractive force. There is a sense of attraction that happened electrons and protons.</span>
Answer:
2914 J
Explanation:
Step 1: Given data
- Mass of the copper tubing (m): 665.0 g
- Initial temperature: 15.71 °C
- Final temperature: 27.09 °C
- Specific heat of copper (c): 0.3850 J/g.°C
Step 2: Calculate the temperature change
ΔT = 27.09 °C - 15.71 °C = 11.38 °C
Step 3: Calculate the energy required (Q)
We will use the following expression.
Q = c × m × ΔT
Q = 0.3850 J/g.°C × 665.0 g × 11.38 °C
Q = 2914 J
Answer:
The autoionization of water is:
2H₂O ⇄ H₃O⁺ + OH⁻ Kw
Explanation
2 moles of water can generate hydronium and hydroxide, when they work as an acid or as a base
If we take account that the concentration of protons (hydroniums), at the standard temperature is 1×10⁻⁷ M, it can be considered that the molarity of water is a constant that can be incorporated into a “greater” constant that also includes to Kc and that is known as ionic product of water, Kw. The expression is:
Kw = [H₃O⁺] . [OH⁻] / [H₂O]²
We do not include water → Kw = [H₃O⁺] . [OH⁻]
Since the water dissociation reaction produces the same concentration of H₃O⁺ as OH⁻, [OH⁻] in pure water will also be 1×10⁻⁷ M
Kw = 1×10⁻⁷ . 1×10⁻⁷ = 1×10⁻¹⁴
pKw = pH + pOH
14 = 7 + 7
The answer you are looking four is 4/2 or 4CO2/2C2H6