v = initial velocity of launch of the stone = 12 m/s
θ = angle of the velocity from the horizontal = 30
Consider the motion of the stone along the vertical direction taking upward direction as positive and down direction as negative.
v₀ = initial velocity along vertical direction = v Sinθ = 12 Sin30 = 6 m/s
a = acceleration of the stone = - 9.8 m/s²
t = time of travel = 4.8 s
Y = vertical displacement of stone = vertical height of the cliff = ?
using the kinematics equation
Y = v₀ t + (0.5) a t²
inserting the values
Y = 6 (4.8) + (0.5) (- 9.8) (4.8)²
Y = - 84.1 m
hence the height of the cliff comes out to be 84.1 m
Answer:

where E = electric field intensity
Explanation:
As we know that plastic ball is suspended by a string which makes 30 degree angle with the vertical
So here force due to electrostatic force on the charged ball is in horizontal direction along the direction of electric field
while weight of the ball is vertically downwards
so here we have


since string makes 30 degree angle with the vertical so we will have





where E = electric field intensity
Answer:
0.04
Explanation:
Fraction of power converted to sound = 80% = 0.08
Fraction incident upon each eardrum onstage = 0.08/2 = 0.04
I don't know if you need to complete this question or do it otherwise, however, I managed to find on the Internet on several places this completion of your sentence:
<span>Electric current flows through a long rod generating thermal energy at a uniform volumetric rate of q = 2 x 10</span>⁶ W/m³.
I'm not sure whether that is the answer you were looking for, but that's what I found.
Answer:
As the launch force increase the launch velocity will
<em><u>Increase</u></em>
The reason for your answer to number six is because
<em><u>There is a direct relationship between force and acceleration.</u></em>
<em><u /></em>
Explanation:
<em>It is known all over the place that, there is a direct relationship between Force and acceleration of an object leading to an increase in force being directly proportional to the increase in the acceleration of the given object and vice versa.</em>