It might make more sense putting it another way but this is basically it. you just take the minutes and divide them by 60 to convert them to hours. then simplify the ratio
We can find the force by using the following formula;
N = ma + mg
Fa = ma = 76 x 1.2 = 91.2
Fg = mg = 76 x 9.8 = 744.8
N = 91.2 + 744.8 = 836
So, the force is 836 N.
Answer:
F=248.5W N
Explanation:
Newton's 2nd Law tells us that F=ma. We will use their averages always. The average acceleration the tennis ball experimented is, by definition:

Since we start counting at 0s and the ball departs from rest, this is just 
So we can write:

Where in the last step we have just multiplied and divided by g, the acceleration of gravity. This allows us to introduce the weight of the ball W since W=gm, so we have:

Substituting our values:

Where the average force exerted has been written it terms of the tennis ball's weight W.
Answer:
D
Explanation:
Because when you stand directly near the source of sound the distance is less and sound is directly proportional to area.
Answer:
0.51
Explanation:
m = mass of the book = 3.5 kg
F = force applied by the broom on the book = 21 N
a = acceleration of the book
v₀ = initial speed of the book = 0 m/s
v = final speed of the book = 1.2 m/s
d = distance traveled = 0.74 m
Using the equation
v² = v₀² + 2 a d
1.2² = 0² + 2 a (0.74)
a = 0.973 m/s²
f = kinetic frictional force
Force equation for the motion of the book is given as
F - f = ma
21 - f = (3.5) (0.973)
f = 17.6 N
μ = Coefficient of kinetic friction
Kinetic frictional force is given as
f = μ mg
17.6 = μ (3.5 x 9.8)
μ = 0.51