Answer:
7.25 x 10^47
Explanation:
1.204 x 10^24 moles*6.022 x 10^23 avogadro's number= 7.25 x 10^
Answer:
Mole fraction of C₄H₄S = 0.55
Explanation:
Mole fraction is moles of solute / Total moles
Total moles are the sum of moles of solute + moles of solvent.
Let's find out the moles of our solute and our solvent.
Mass of solute: 55g
Mass of solvent: 65g
Mol = Mass / molar mass
55 g / 84.06 g/mol = 0.654 moles of C₄H₄S
65 g /123 g/mol = 0.529 moles of C₂H₃BrO
Total moles = 0.654 + 0.529 = 1.183 moles
Mole fraction of thiophene = Moles of tiophene / Total moles
0.654 / 1.183 = 0.55
1. The hypothesis for this is experiment is that the 50:50 of methanol-water mixture will not turn to solid when the temperature reaches to -40°C.
2. The procedure for this is measuring equal volumes of water and methanol using the graduated cylinder. You can measure 100 mL of water and 100 mL of methanol using the graduated cylinder. Then, mix them in the beaker. Next, measure 200 mL of water, and another 200 mL of methanol. Don't mix them. Also, make a 60:40 mixture by measuring 120 mL of water and 80 mL of methanol, then mix them together. Place them all in the refrigerator at the same time. Record the time when they would freeze to solid.
3. The controls for this experiment are the 200 mL water alone, and the 200 mL methanol alone.
4. The independent variable in here is the time, while the dependent variable is the temperature of the mixtures.
5. If the hypothesis turns out to be true, then all the mixtures prepared should freeze and become solid after a certain period of time, with the exception of the 50:50 mixture. The 50:50 mixture should still remain as a liquid even when left overnight.
Answer:
friction
Explanation:
since it has a high tempature the friction increases like blowing air in a furnace
n = 1.5atm (15L) / .0821 (280k) = .98 mol NaCl
NaCl = 22.99g Na + 35.45g Cl = 58.44g NaCl
58.44g NaCl x .98 mol NaCl = 57.27g NaCl
Explanation:
hope you get it right :)