0.0821 L-atm/mol-K
8.314 kPa-L/mol-K
The most abundant isotope is Gz-83 because the average atomic mass of Gz is closer to 83.
The average atomic mass is defined as the weigthed mean of the isotopes.
The mass of the isotopes is 80, 81 and 83 uma, respectively.
As the average atomic mass (82.74uma) is closer to the atomic mass of Gz-83 than the mass of the other isotopes, you can interpretate that the most abundant isotope is Gz-83.
Learn more about average atomic mass in:
brainly.com/question/21536220
Answer:
In an ionic bonds, the metal loses electrons to become a positively charged cation, In which the nonmetal accepts those electrons to become a negatively charged anion.
Explanation:
Answer:
y1 = 0.3162
y2 = 0.6838
Explanation:
ok let us begin,
first we would be defining the parameters;
at 25°C;
1-propanol P1° = 20.90 Torr
2-propanol P2° = 45.2 Torr
From Raoults law:
P(1-propanol) = P⁰ × X(1-propanol)
P(1-propanol) = 20.9 torr × 0.45 = 9.405
P(1-propanol) = 9.405 torr
Also P(2-propanol) = P⁰ × X(2-propanol)
P(2-propanol) = 45.2 torr × 0.45
P(2-propanol) = 20.34 torr
but the total pressure = sum of individual pressures
total pressure = 9.405 + 20.34
total pressure = 29.745 torr
given that y1 and y2 represent the mole fraction of each in the vapor phase
y1 = P1 / total pressure
y1 = 9.405/29.745
y1 = 0.3162
Since y1 + y2 = 1
y2 = 1 - y1
∴ y2 = 1 - 0.3162
y2 = 0.6838
cheers, i hope this helps.