First identify which is being oxidized and reduced. In this case, the Mg is being oxidized and the Hg is being reduced.
Mg --> Mg+2
<span>Hg+2 --> Hg+1
</span>
Then you have to balance each half reaction first with electrons before adding them together in one equation

⇒

and

⇒
and then combine them together to form

⇒

It isn't necessary to keep the electrons but its essential to know how many there are in order to know how many are in the equation in order to calculate the reaction energy. Note: A<span>dd H+ and H2O to balance the H's and O's in acidic solution if needed.</span>
Answer:
The concentration would be; 0.0038 μgmL
Explanation:
Half life, t1/2 = 68 minutes
Initial Conc. [A]o = 0.12/μgmL
Final Conc [A] = ?
Time. k = 340 minutes
ln[A] = ln[A]o - kt
t1/2 = ln2 / k
k = 0.693 / t1/2 = 0.693 / 68 = 0.01019
ln[A] = ln (0.12) - 0.01019 (340)
ln[A] = -2.1203 -3.4646
ln[A] = -5.5849
[A] = 0.00375 ≈ 0.0038 μgmL
Chemical- it produces ammonia.
The answer is (1) Arrhenius acid and an electrolyte. The HNO3 is a H+ ion donor and OH- receptor. Electrolyte means the compound will release ion when dissolving in suitable ionized solution.
<u>Answer: </u><em>B. Adding more protons to a positively charged body until the number of protons matches the number of electrons</em>
Option B is the appropriate response
<u>Explanation:</u>
Utilising the equivalent number of inverse charges will kill a charged body.
Adding more protons to a decidedly charged body until the number of protons coordinates the quantity of electrons won't kill the body since protons are emphatically charged particles. Adding more protons to an emphatically charged body would make it all the more decidedly charged.
Enabling free electrons to escape from a contrarily charged body will kill since the more negative body leaves the negative electrons.