Based on the data provided;
- number of moles of helium gas is 1.25 moles
- pressure at peak temperature is 259.3 kPa
- internal pressure is above 256 kPa, therefore, the balloon will burst.
- pressure should be reduced to a value less than 256 kPa by reducing the temperature
<h3>What is the ideal has equation?</h3>
The ideal gas equation relatesthe pressure, volume, moles and temperature of a gas.
The moles of helium gas is calculated using the Ideal gas equation:
n is the number of moles of gas
R is molar gas constant = 8.314 L⋅kPa/Kmol
P is pressure = 239 kPa
T is temperature = 21°C = 294 K
V is volume = 12.8 L
Therefore;
n = PV/RT
n = 239 × 12.8 / 8.314 × 294
n = 1.25 moles
The number of moles of helium gas is 1.25 moles
At peak temperature, T = 46°C = 319 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 319/294
P2 = 259.3 kPa
The pressure at peak temperature is 259.3 kPa
At 42°C, T = 315 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 315/294
P2 = 256.07 kPa
Since the internal pressure is above 256 kPa, the balloon will burst.
The pressure should be reduced to a value less than 256 kPa by reducing the temperature.
Learn more about gas ideal gas equation at: brainly.com/question/12873752
<span>pv=nrt; Pressure and moles are constant.
p=nr(150k)/.5 L; Pressure initially
After temp change
pv=nrt; What is volume?
v=nr(350k)/p; p is constant so we can substitute from above
v=nr(350k)/(nr(150k)/.5 L))
v=350/150/.5 L
v=4.66 liters</span>
Answer:
c = 0.07 j/g.k
Explanation:
Given data:
Mass of sample = 35 g
Heat absorbed = 48 j
Initial temperature = 293 K
Final temperature = 313 K
Specific heat of substance = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
ΔT = 313 k - 293 K
ΔT = 20 k
Now we will put the values in formula.
48 j = 35 g × c× 20 k
48 j = 700 g.k ×c
c = 48 j/700 g.k
c = 0.07 j/g.k
Answer:
More Energy
Explanation:
Energy is required to break bonds
Answer:
Vaporization and Condensation When a liquid vaporizes in a closed container, gas molecules cannot escape. As these gas phase molecules move randomly about, they will occasionally collide with the surface of the condensed phase, and in some cases, these collisions will result in the molecules re-entering the condensed phase.