Answer:
The program is as follows:
i = 1
while(i<11):
j = 1
while(j<=i):
print('*', end = '')
j += 1
i += 1
print()
Explanation:
Initialize i to 1
i = 1
The outer loop is repeated as long as i is less than 11
while(i<11):
Initialize j to 1
j = 1
The inner loop is repeated as long as j is less than or equal i
while(j<=i):
This prints a *
print('*', end = '')
This increments j and ends the inner loop
j += 1
This increments i
i += 1
This prints a blank and ends the inner loop
print()
Answer: 33.35 minutes
Explanation:
A(t) = A(o) *(.5)^[t/(t1/2)]....equ1
Where
A(t) = geiger count after time t = 100
A(o) = initial geiger count = 400
(t1/2) = the half life of decay
t = time between geiger count = 66.7 minutes
Sub into equ 1
100=400(.5)^[66.7/(t1/2)
Equ becomes
.25= (.5)^[66.7/(t1/2)]
Take log of both sides
Log 0.25 = [66.7/(t1/2)] * log 0.5
66.7/(t1/2) = 2
(t1/2) = (66.7/2 ) = 33.35 minutes
Efficiency is the minimum use of energy to accomplish the task. The wasted energy will be 375 J when 750 J of energy is given.
<h3>What is wasted energy?</h3>
Wasted energy is energy that is not useful when the transformation in the system occurs.
Total energy = 750 J
The efficiency of the system = 50 %
Output work (OW) is calculated as:
Efficiency = output work ÷ input work × 100%
750 × 50 = 100 OW
OW = 375 J
Wasted energy = Total energy - output work
= 750 - 375
= 375 J
Therefore, the machine is 50 % inefficient and has wasted energy of 375 J.
Learn more about wasted energy here:
brainly.com/question/16177264
#SPJ4
Answer:
T = 858.25 s
Explanation:
Given data:
Reheat stage for a 100-mm-thick steel plate ( 7830 kg/m3, c 550 J/kg K, k 48 W/m K),
initial uniform temperature ( Ti ) = 200 c
Final temperature = 550 c
convection coefficient = 250 w/m^2 k
products combustion temp = 800 c
calculate how long the plate should be left in the furnace ( to attain 550 c )
first calculate/determine the Fourier series Number ( Fo )

= 0.4167 = 
therefore Fo = 3.8264
Now determine how long the plate should be left in the furnace
Fo = 
k = 48
p = 7830
L = 0.1
Input the values into the relation and make t subject of the formula
hence t = 858.25 s
John Smeatom, U.K. 18th century, was the first self-proclaimed, civil engineer in the 18th century and IS considered “the father of modern, civil engineering”.
hoped this helped! :)